[Pcre-svn] [406] code/trunk: Trailing space tidies

Página Inicial
Delete this message
Autor: Subversion repository
Data:  
Para: pcre-svn
Assunto: [Pcre-svn] [406] code/trunk: Trailing space tidies
Revision: 406
          http://vcs.pcre.org/viewvc?view=rev&revision=406
Author:   ph10
Date:     2009-03-23 12:05:43 +0000 (Mon, 23 Mar 2009)


Log Message:
-----------
Trailing space tidies

Modified Paths:
--------------
    code/trunk/NON-UNIX-USE
    code/trunk/README
    code/trunk/doc/html/pcre.html
    code/trunk/doc/html/pcrepattern.html
    code/trunk/doc/pcre.3
    code/trunk/doc/pcre.txt
    code/trunk/doc/pcrepattern.3
    code/trunk/pcre_compile.c
    code/trunk/pcre_dfa_exec.c
    code/trunk/pcre_exec.c
    code/trunk/pcre_internal.h


Modified: code/trunk/NON-UNIX-USE
===================================================================
--- code/trunk/NON-UNIX-USE    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/NON-UNIX-USE    2009-03-23 12:05:43 UTC (rev 406)
@@ -23,7 +23,7 @@
 libraries work. The items in the PCRE distribution and Makefile that relate to
 anything other than Unix-like systems are untested by me.


-There are some other comments and files (including some documentation in CHM
+There are some other comments and files (including some documentation in CHM
format) in the Contrib directory on the FTP site:

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/Contrib

Modified: code/trunk/README
===================================================================
--- code/trunk/README    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/README    2009-03-23 12:05:43 UTC (rev 406)
@@ -84,7 +84,7 @@
   2. A set of files containing all the documentation in HTML form, hyperlinked
      in various ways, and rooted in a file called index.html, is distributed in
      doc/html and installed in <prefix>/share/doc/pcre/html.
-     
+
 Users of PCRE have contributed files containing the documentation for various
 releases in CHM format. These can be found in the Contrib directory of the FTP
 site (see next section).


Modified: code/trunk/doc/html/pcre.html
===================================================================
--- code/trunk/doc/html/pcre.html    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/doc/html/pcre.html    2009-03-23 12:05:43 UTC (rev 406)
@@ -258,7 +258,8 @@
 values less than 256. This remains true even when PCRE includes Unicode
 property support, because to do otherwise would slow down PCRE in many common
 cases. If you really want to test for a wider sense of, say, "digit", you
-must use Unicode property tests such as \p{Nd}.
+must use Unicode property tests such as \p{Nd}. Note that this also applies to
+\b, because it is defined in terms of \w and \W.
 </P>
 <P>
 7. Similarly, characters that match the POSIX named character classes are all
@@ -295,9 +296,9 @@
 </P>
 <br><a name="SEC6" href="#TOC1">REVISION</a><br>
 <P>
-Last updated: 12 April 2008
+Last updated: 18 March 2009
 <br>
-Copyright &copy; 1997-2008 University of Cambridge.
+Copyright &copy; 1997-2009 University of Cambridge.
 <br>
 <p>
 Return to the <a href="index.html">PCRE index page</a>.


Modified: code/trunk/doc/html/pcrepattern.html
===================================================================
--- code/trunk/doc/html/pcrepattern.html    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/doc/html/pcrepattern.html    2009-03-23 12:05:43 UTC (rev 406)
@@ -368,7 +368,8 @@
 \w, and always match \D, \S, and \W. This is true even when Unicode
 character property support is available. These sequences retain their original
 meanings from before UTF-8 support was available, mainly for efficiency
-reasons.
+reasons. Note that this also affects \b, because it is defined in terms of \w
+and \W.
 </P>
 <P>
 The sequences \h, \H, \v, and \V are Perl 5.10 features. In contrast to the
@@ -2243,7 +2244,7 @@
 </P>
 <br><a name="SEC28" href="#TOC1">REVISION</a><br>
 <P>
-Last updated: 08 March 2009
+Last updated: 18 March 2009
 <br>
 Copyright &copy; 1997-2009 University of Cambridge.
 <br>


Modified: code/trunk/doc/pcre.3
===================================================================
--- code/trunk/doc/pcre.3    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/doc/pcre.3    2009-03-23 12:05:43 UTC (rev 406)
@@ -252,7 +252,7 @@
 values less than 256. This remains true even when PCRE includes Unicode
 property support, because to do otherwise would slow down PCRE in many common
 cases. If you really want to test for a wider sense of, say, "digit", you
-must use Unicode property tests such as \ep{Nd}. Note that this also applies to 
+must use Unicode property tests such as \ep{Nd}. Note that this also applies to
 \eb, because it is defined in terms of \ew and \eW.
 .P
 7. Similarly, characters that match the POSIX named character classes are all


Modified: code/trunk/doc/pcre.txt
===================================================================
--- code/trunk/doc/pcre.txt    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/doc/pcre.txt    2009-03-23 12:05:43 UTC (rev 406)
@@ -224,24 +224,25 @@
        includes  Unicode  property support, because to do otherwise would slow
        down PCRE in many common cases. If you really want to test for a  wider
        sense  of,  say,  "digit",  you must use Unicode property tests such as
-       \p{Nd}.
+       \p{Nd}. Note that this also applies to \b, because  it  is  defined  in
+       terms of \w and \W.


-       7. Similarly, characters that match the POSIX named  character  classes
+       7.  Similarly,  characters that match the POSIX named character classes
        are all low-valued characters.


-       8.  However,  the Perl 5.10 horizontal and vertical whitespace matching
+       8. However, the Perl 5.10 horizontal and vertical  whitespace  matching
        escapes (\h, \H, \v, and \V) do match all the appropriate Unicode char-
        acters.


-       9.  Case-insensitive  matching  applies only to characters whose values
-       are less than 128, unless PCRE is built with Unicode property  support.
-       Even  when  Unicode  property support is available, PCRE still uses its
-       own character tables when checking the case of  low-valued  characters,
-       so  as not to degrade performance.  The Unicode property information is
+       9. Case-insensitive matching applies only to  characters  whose  values
+       are  less than 128, unless PCRE is built with Unicode property support.
+       Even when Unicode property support is available, PCRE  still  uses  its
+       own  character  tables when checking the case of low-valued characters,
+       so as not to degrade performance.  The Unicode property information  is
        used only for characters with higher values. Even when Unicode property
        support is available, PCRE supports case-insensitive matching only when
-       there is a one-to-one mapping between a letter's  cases.  There  are  a
-       small  number  of  many-to-one  mappings in Unicode; these are not sup-
+       there  is  a  one-to-one  mapping between a letter's cases. There are a
+       small number of many-to-one mappings in Unicode;  these  are  not  sup-
        ported by PCRE.



@@ -251,15 +252,15 @@
        University Computing Service
        Cambridge CB2 3QH, England.


-       Putting an actual email address here seems to have been a spam  magnet,
-       so  I've  taken  it away. If you want to email me, use my two initials,
+       Putting  an actual email address here seems to have been a spam magnet,
+       so I've taken it away. If you want to email me, use  my  two  initials,
        followed by the two digits 10, at the domain cam.ac.uk.



REVISION

-       Last updated: 12 April 2008
-       Copyright (c) 1997-2008 University of Cambridge.
+       Last updated: 18 March 2009
+       Copyright (c) 1997-2009 University of Cambridge.
 ------------------------------------------------------------------------------



@@ -3268,10 +3269,11 @@
        \s, or \w, and always match \D, \S, and \W. This is true even when Uni-
        code  character  property  support is available. These sequences retain
        their original meanings from before UTF-8 support was available, mainly
-       for efficiency reasons.
+       for  efficiency  reasons. Note that this also affects \b, because it is
+       defined in terms of \w and \W.


        The sequences \h, \H, \v, and \V are Perl 5.10 features. In contrast to
-       the other sequences, these do match certain high-valued  codepoints  in
+       the  other  sequences, these do match certain high-valued codepoints in
        UTF-8 mode.  The horizontal space characters are:


          U+0009     Horizontal tab
@@ -3305,41 +3307,41 @@
          U+2029     Paragraph separator


        A "word" character is an underscore or any character less than 256 that
-       is a letter or digit. The definition of  letters  and  digits  is  con-
-       trolled  by PCRE's low-valued character tables, and may vary if locale-
-       specific matching is taking place (see "Locale support" in the  pcreapi
-       page).  For  example,  in  a French locale such as "fr_FR" in Unix-like
-       systems, or "french" in Windows, some character codes greater than  128
-       are  used for accented letters, and these are matched by \w. The use of
+       is  a  letter  or  digit.  The definition of letters and digits is con-
+       trolled by PCRE's low-valued character tables, and may vary if  locale-
+       specific  matching is taking place (see "Locale support" in the pcreapi
+       page). For example, in a French locale such  as  "fr_FR"  in  Unix-like
+       systems,  or "french" in Windows, some character codes greater than 128
+       are used for accented letters, and these are matched by \w. The use  of
        locales with Unicode is discouraged.


    Newline sequences


-       Outside a character class, by default, the escape sequence  \R  matches
+       Outside  a  character class, by default, the escape sequence \R matches
        any Unicode newline sequence. This is a Perl 5.10 feature. In non-UTF-8
        mode \R is equivalent to the following:


          (?>\r\n|\n|\x0b|\f|\r|\x85)


-       This is an example of an "atomic group", details  of  which  are  given
+       This  is  an  example  of an "atomic group", details of which are given
        below.  This particular group matches either the two-character sequence
-       CR followed by LF, or  one  of  the  single  characters  LF  (linefeed,
+       CR  followed  by  LF,  or  one  of  the single characters LF (linefeed,
        U+000A), VT (vertical tab, U+000B), FF (formfeed, U+000C), CR (carriage
        return, U+000D), or NEL (next line, U+0085). The two-character sequence
        is treated as a single unit that cannot be split.


-       In  UTF-8  mode, two additional characters whose codepoints are greater
+       In UTF-8 mode, two additional characters whose codepoints  are  greater
        than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa-
-       rator,  U+2029).   Unicode character property support is not needed for
+       rator, U+2029).  Unicode character property support is not  needed  for
        these characters to be recognized.


        It is possible to restrict \R to match only CR, LF, or CRLF (instead of
-       the  complete  set  of  Unicode  line  endings)  by  setting the option
+       the complete set  of  Unicode  line  endings)  by  setting  the  option
        PCRE_BSR_ANYCRLF either at compile time or when the pattern is matched.
        (BSR is an abbrevation for "backslash R".) This can be made the default
-       when PCRE is built; if this is the case, the  other  behaviour  can  be
-       requested  via  the  PCRE_BSR_UNICODE  option.   It is also possible to
-       specify these settings by starting a pattern string  with  one  of  the
+       when  PCRE  is  built;  if this is the case, the other behaviour can be
+       requested via the PCRE_BSR_UNICODE option.   It  is  also  possible  to
+       specify  these  settings  by  starting a pattern string with one of the
        following sequences:


          (*BSR_ANYCRLF)   CR, LF, or CRLF only
@@ -3348,9 +3350,9 @@
        These override the default and the options given to pcre_compile(), but
        they can be overridden by options given to pcre_exec(). Note that these
        special settings, which are not Perl-compatible, are recognized only at
-       the very start of a pattern, and that they must be in  upper  case.  If
-       more  than  one  of  them is present, the last one is used. They can be
-       combined with a change of newline convention, for  example,  a  pattern
+       the  very  start  of a pattern, and that they must be in upper case. If
+       more than one of them is present, the last one is  used.  They  can  be
+       combined  with  a  change of newline convention, for example, a pattern
        can start with:


          (*ANY)(*BSR_ANYCRLF)
@@ -3360,49 +3362,49 @@
    Unicode character properties


        When PCRE is built with Unicode character property support, three addi-
-       tional escape sequences that match characters with specific  properties
-       are  available.   When not in UTF-8 mode, these sequences are of course
-       limited to testing characters whose codepoints are less than  256,  but
+       tional  escape sequences that match characters with specific properties
+       are available.  When not in UTF-8 mode, these sequences are  of  course
+       limited  to  testing characters whose codepoints are less than 256, but
        they do work in this mode.  The extra escape sequences are:


          \p{xx}   a character with the xx property
          \P{xx}   a character without the xx property
          \X       an extended Unicode sequence


-       The  property  names represented by xx above are limited to the Unicode
+       The property names represented by xx above are limited to  the  Unicode
        script names, the general category properties, and "Any", which matches
        any character (including newline). Other properties such as "InMusical-
-       Symbols" are not currently supported by PCRE. Note  that  \P{Any}  does
+       Symbols"  are  not  currently supported by PCRE. Note that \P{Any} does
        not match any characters, so always causes a match failure.


        Sets of Unicode characters are defined as belonging to certain scripts.
-       A character from one of these sets can be matched using a script  name.
+       A  character from one of these sets can be matched using a script name.
        For example:


          \p{Greek}
          \P{Han}


-       Those  that are not part of an identified script are lumped together as
+       Those that are not part of an identified script are lumped together  as
        "Common". The current list of scripts is:


        Arabic,  Armenian,  Balinese,  Bengali,  Bopomofo,  Braille,  Buginese,
-       Buhid,   Canadian_Aboriginal,   Cherokee,  Common,  Coptic,  Cuneiform,
+       Buhid,  Canadian_Aboriginal,  Cherokee,  Common,   Coptic,   Cuneiform,
        Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic, Georgian, Glagolitic,
-       Gothic,  Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hira-
-       gana, Inherited, Kannada,  Katakana,  Kharoshthi,  Khmer,  Lao,  Latin,
+       Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew,  Hira-
+       gana,  Inherited,  Kannada,  Katakana,  Kharoshthi,  Khmer, Lao, Latin,
        Limbu,  Linear_B,  Malayalam,  Mongolian,  Myanmar,  New_Tai_Lue,  Nko,
-       Ogham, Old_Italic, Old_Persian, Oriya, Osmanya,  Phags_Pa,  Phoenician,
+       Ogham,  Old_Italic,  Old_Persian, Oriya, Osmanya, Phags_Pa, Phoenician,
        Runic,  Shavian,  Sinhala,  Syloti_Nagri,  Syriac,  Tagalog,  Tagbanwa,
        Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Yi.


-       Each character has exactly one general category property, specified  by
+       Each  character has exactly one general category property, specified by
        a two-letter abbreviation. For compatibility with Perl, negation can be
-       specified by including a circumflex between the opening brace  and  the
+       specified  by  including a circumflex between the opening brace and the
        property name. For example, \p{^Lu} is the same as \P{Lu}.


        If only one letter is specified with \p or \P, it includes all the gen-
-       eral category properties that start with that letter. In this case,  in
-       the  absence of negation, the curly brackets in the escape sequence are
+       eral  category properties that start with that letter. In this case, in
+       the absence of negation, the curly brackets in the escape sequence  are
        optional; these two examples have the same effect:


          \p{L}
@@ -3454,57 +3456,57 @@
          Zp    Paragraph separator
          Zs    Space separator


-       The special property L& is also supported: it matches a character  that
-       has  the  Lu,  Ll, or Lt property, in other words, a letter that is not
+       The  special property L& is also supported: it matches a character that
+       has the Lu, Ll, or Lt property, in other words, a letter  that  is  not
        classified as a modifier or "other".


-       The Cs (Surrogate) property applies only to  characters  in  the  range
-       U+D800  to  U+DFFF. Such characters are not valid in UTF-8 strings (see
+       The  Cs  (Surrogate)  property  applies only to characters in the range
+       U+D800 to U+DFFF. Such characters are not valid in UTF-8  strings  (see
        RFC 3629) and so cannot be tested by PCRE, unless UTF-8 validity check-
-       ing  has  been  turned off (see the discussion of PCRE_NO_UTF8_CHECK in
+       ing has been turned off (see the discussion  of  PCRE_NO_UTF8_CHECK  in
        the pcreapi page).


-       The long synonyms for these properties  that  Perl  supports  (such  as
-       \p{Letter})  are  not  supported by PCRE, nor is it permitted to prefix
+       The  long  synonyms  for  these  properties that Perl supports (such as
+       \p{Letter}) are not supported by PCRE, nor is it  permitted  to  prefix
        any of these properties with "Is".


        No character that is in the Unicode table has the Cn (unassigned) prop-
        erty.  Instead, this property is assumed for any code point that is not
        in the Unicode table.


-       Specifying caseless matching does not affect  these  escape  sequences.
+       Specifying  caseless  matching  does not affect these escape sequences.
        For example, \p{Lu} always matches only upper case letters.


-       The  \X  escape  matches  any number of Unicode characters that form an
+       The \X escape matches any number of Unicode  characters  that  form  an
        extended Unicode sequence. \X is equivalent to


          (?>\PM\pM*)


-       That is, it matches a character without the "mark"  property,  followed
-       by  zero  or  more  characters with the "mark" property, and treats the
-       sequence as an atomic group (see below).  Characters  with  the  "mark"
-       property  are  typically  accents  that affect the preceding character.
-       None of them have codepoints less than 256, so  in  non-UTF-8  mode  \X
+       That  is,  it matches a character without the "mark" property, followed
+       by zero or more characters with the "mark"  property,  and  treats  the
+       sequence  as  an  atomic group (see below).  Characters with the "mark"
+       property are typically accents that  affect  the  preceding  character.
+       None  of  them  have  codepoints less than 256, so in non-UTF-8 mode \X
        matches any one character.


-       Matching  characters  by Unicode property is not fast, because PCRE has
-       to search a structure that contains  data  for  over  fifteen  thousand
+       Matching characters by Unicode property is not fast, because  PCRE  has
+       to  search  a  structure  that  contains data for over fifteen thousand
        characters. That is why the traditional escape sequences such as \d and
        \w do not use Unicode properties in PCRE.


    Resetting the match start


        The escape sequence \K, which is a Perl 5.10 feature, causes any previ-
-       ously  matched  characters  not  to  be  included  in the final matched
+       ously matched characters not  to  be  included  in  the  final  matched
        sequence. For example, the pattern:


          foo\Kbar


-       matches "foobar", but reports that it has matched "bar".  This  feature
-       is  similar  to  a lookbehind assertion (described below).  However, in
-       this case, the part of the subject before the real match does not  have
-       to  be of fixed length, as lookbehind assertions do. The use of \K does
-       not interfere with the setting of captured  substrings.   For  example,
+       matches  "foobar",  but reports that it has matched "bar". This feature
+       is similar to a lookbehind assertion (described  below).   However,  in
+       this  case, the part of the subject before the real match does not have
+       to be of fixed length, as lookbehind assertions do. The use of \K  does
+       not  interfere  with  the setting of captured substrings.  For example,
        when the pattern


          (foo)\Kbar
@@ -3513,10 +3515,10 @@


    Simple assertions


-       The  final use of backslash is for certain simple assertions. An asser-
-       tion specifies a condition that has to be met at a particular point  in
-       a  match, without consuming any characters from the subject string. The
-       use of subpatterns for more complicated assertions is described  below.
+       The final use of backslash is for certain simple assertions. An  asser-
+       tion  specifies a condition that has to be met at a particular point in
+       a match, without consuming any characters from the subject string.  The
+       use  of subpatterns for more complicated assertions is described below.
        The backslashed assertions are:


          \b     matches at a word boundary
@@ -3527,41 +3529,41 @@
          \z     matches only at the end of the subject
          \G     matches at the first matching position in the subject


-       These  assertions may not appear in character classes (but note that \b
+       These assertions may not appear in character classes (but note that  \b
        has a different meaning, namely the backspace character, inside a char-
        acter class).


-       A  word  boundary is a position in the subject string where the current
-       character and the previous character do not both match \w or  \W  (i.e.
-       one  matches  \w  and the other matches \W), or the start or end of the
+       A word boundary is a position in the subject string where  the  current
+       character  and  the previous character do not both match \w or \W (i.e.
+       one matches \w and the other matches \W), or the start or  end  of  the
        string if the first or last character matches \w, respectively.


-       The \A, \Z, and \z assertions differ from  the  traditional  circumflex
+       The  \A,  \Z,  and \z assertions differ from the traditional circumflex
        and dollar (described in the next section) in that they only ever match
-       at the very start and end of the subject string, whatever  options  are
-       set.  Thus,  they are independent of multiline mode. These three asser-
+       at  the  very start and end of the subject string, whatever options are
+       set. Thus, they are independent of multiline mode. These  three  asser-
        tions are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options, which
-       affect  only the behaviour of the circumflex and dollar metacharacters.
-       However, if the startoffset argument of pcre_exec() is non-zero,  indi-
+       affect only the behaviour of the circumflex and dollar  metacharacters.
+       However,  if the startoffset argument of pcre_exec() is non-zero, indi-
        cating that matching is to start at a point other than the beginning of
-       the subject, \A can never match. The difference between \Z  and  \z  is
+       the  subject,  \A  can never match. The difference between \Z and \z is
        that \Z matches before a newline at the end of the string as well as at
        the very end, whereas \z matches only at the end.


-       The \G assertion is true only when the current matching position is  at
-       the  start point of the match, as specified by the startoffset argument
-       of pcre_exec(). It differs from \A when the  value  of  startoffset  is
-       non-zero.  By calling pcre_exec() multiple times with appropriate argu-
+       The  \G assertion is true only when the current matching position is at
+       the start point of the match, as specified by the startoffset  argument
+       of  pcre_exec().  It  differs  from \A when the value of startoffset is
+       non-zero. By calling pcre_exec() multiple times with appropriate  argu-
        ments, you can mimic Perl's /g option, and it is in this kind of imple-
        mentation where \G can be useful.


-       Note,  however,  that  PCRE's interpretation of \G, as the start of the
+       Note, however, that PCRE's interpretation of \G, as the  start  of  the
        current match, is subtly different from Perl's, which defines it as the
-       end  of  the  previous  match. In Perl, these can be different when the
-       previously matched string was empty. Because PCRE does just  one  match
+       end of the previous match. In Perl, these can  be  different  when  the
+       previously  matched  string was empty. Because PCRE does just one match
        at a time, it cannot reproduce this behaviour.


-       If  all  the alternatives of a pattern begin with \G, the expression is
+       If all the alternatives of a pattern begin with \G, the  expression  is
        anchored to the starting match position, and the "anchored" flag is set
        in the compiled regular expression.


@@ -3569,90 +3571,90 @@
CIRCUMFLEX AND DOLLAR

        Outside a character class, in the default matching mode, the circumflex
-       character is an assertion that is true only  if  the  current  matching
-       point  is  at the start of the subject string. If the startoffset argu-
-       ment of pcre_exec() is non-zero, circumflex  can  never  match  if  the
-       PCRE_MULTILINE  option  is  unset. Inside a character class, circumflex
+       character  is  an  assertion  that is true only if the current matching
+       point is at the start of the subject string. If the  startoffset  argu-
+       ment  of  pcre_exec()  is  non-zero,  circumflex can never match if the
+       PCRE_MULTILINE option is unset. Inside a  character  class,  circumflex
        has an entirely different meaning (see below).


-       Circumflex need not be the first character of the pattern if  a  number
-       of  alternatives are involved, but it should be the first thing in each
-       alternative in which it appears if the pattern is ever  to  match  that
-       branch.  If all possible alternatives start with a circumflex, that is,
-       if the pattern is constrained to match only at the start  of  the  sub-
-       ject,  it  is  said  to be an "anchored" pattern. (There are also other
+       Circumflex  need  not be the first character of the pattern if a number
+       of alternatives are involved, but it should be the first thing in  each
+       alternative  in  which  it appears if the pattern is ever to match that
+       branch. If all possible alternatives start with a circumflex, that  is,
+       if  the  pattern  is constrained to match only at the start of the sub-
+       ject, it is said to be an "anchored" pattern.  (There  are  also  other
        constructs that can cause a pattern to be anchored.)


-       A dollar character is an assertion that is true  only  if  the  current
-       matching  point  is  at  the  end of the subject string, or immediately
+       A  dollar  character  is  an assertion that is true only if the current
+       matching point is at the end of  the  subject  string,  or  immediately
        before a newline at the end of the string (by default). Dollar need not
-       be  the  last  character of the pattern if a number of alternatives are
-       involved, but it should be the last item in  any  branch  in  which  it
+       be the last character of the pattern if a number  of  alternatives  are
+       involved,  but  it  should  be  the last item in any branch in which it
        appears. Dollar has no special meaning in a character class.


-       The  meaning  of  dollar  can be changed so that it matches only at the
-       very end of the string, by setting the  PCRE_DOLLAR_ENDONLY  option  at
+       The meaning of dollar can be changed so that it  matches  only  at  the
+       very  end  of  the string, by setting the PCRE_DOLLAR_ENDONLY option at
        compile time. This does not affect the \Z assertion.


        The meanings of the circumflex and dollar characters are changed if the
-       PCRE_MULTILINE option is set. When  this  is  the  case,  a  circumflex
-       matches  immediately after internal newlines as well as at the start of
-       the subject string. It does not match after a  newline  that  ends  the
-       string.  A dollar matches before any newlines in the string, as well as
-       at the very end, when PCRE_MULTILINE is set. When newline is  specified
-       as  the  two-character  sequence CRLF, isolated CR and LF characters do
+       PCRE_MULTILINE  option  is  set.  When  this  is the case, a circumflex
+       matches immediately after internal newlines as well as at the start  of
+       the  subject  string.  It  does not match after a newline that ends the
+       string. A dollar matches before any newlines in the string, as well  as
+       at  the very end, when PCRE_MULTILINE is set. When newline is specified
+       as the two-character sequence CRLF, isolated CR and  LF  characters  do
        not indicate newlines.


-       For example, the pattern /^abc$/ matches the subject string  "def\nabc"
-       (where  \n  represents a newline) in multiline mode, but not otherwise.
-       Consequently, patterns that are anchored in single  line  mode  because
-       all  branches  start  with  ^ are not anchored in multiline mode, and a
-       match for circumflex is  possible  when  the  startoffset  argument  of
-       pcre_exec()  is  non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if
+       For  example, the pattern /^abc$/ matches the subject string "def\nabc"
+       (where \n represents a newline) in multiline mode, but  not  otherwise.
+       Consequently,  patterns  that  are anchored in single line mode because
+       all branches start with ^ are not anchored in  multiline  mode,  and  a
+       match  for  circumflex  is  possible  when  the startoffset argument of
+       pcre_exec() is non-zero. The PCRE_DOLLAR_ENDONLY option is  ignored  if
        PCRE_MULTILINE is set.


-       Note that the sequences \A, \Z, and \z can be used to match  the  start
-       and  end of the subject in both modes, and if all branches of a pattern
-       start with \A it is always anchored, whether or not  PCRE_MULTILINE  is
+       Note  that  the sequences \A, \Z, and \z can be used to match the start
+       and end of the subject in both modes, and if all branches of a  pattern
+       start  with  \A it is always anchored, whether or not PCRE_MULTILINE is
        set.



FULL STOP (PERIOD, DOT)

        Outside a character class, a dot in the pattern matches any one charac-
-       ter in the subject string except (by default) a character  that  signi-
-       fies  the  end  of  a line. In UTF-8 mode, the matched character may be
+       ter  in  the subject string except (by default) a character that signi-
+       fies the end of a line. In UTF-8 mode, the  matched  character  may  be
        more than one byte long.


-       When a line ending is defined as a single character, dot never  matches
-       that  character; when the two-character sequence CRLF is used, dot does
-       not match CR if it is immediately followed  by  LF,  but  otherwise  it
-       matches  all characters (including isolated CRs and LFs). When any Uni-
-       code line endings are being recognized, dot does not match CR or LF  or
+       When  a line ending is defined as a single character, dot never matches
+       that character; when the two-character sequence CRLF is used, dot  does
+       not  match  CR  if  it  is immediately followed by LF, but otherwise it
+       matches all characters (including isolated CRs and LFs). When any  Uni-
+       code  line endings are being recognized, dot does not match CR or LF or
        any of the other line ending characters.


-       The  behaviour  of  dot  with regard to newlines can be changed. If the
-       PCRE_DOTALL option is set, a dot matches  any  one  character,  without
+       The behaviour of dot with regard to newlines can  be  changed.  If  the
+       PCRE_DOTALL  option  is  set,  a dot matches any one character, without
        exception. If the two-character sequence CRLF is present in the subject
        string, it takes two dots to match it.


-       The handling of dot is entirely independent of the handling of  circum-
-       flex  and  dollar,  the  only relationship being that they both involve
+       The  handling of dot is entirely independent of the handling of circum-
+       flex and dollar, the only relationship being  that  they  both  involve
        newlines. Dot has no special meaning in a character class.



MATCHING A SINGLE BYTE

        Outside a character class, the escape sequence \C matches any one byte,
-       both  in  and  out  of  UTF-8 mode. Unlike a dot, it always matches any
-       line-ending characters. The feature is provided in  Perl  in  order  to
-       match  individual bytes in UTF-8 mode. Because it breaks up UTF-8 char-
-       acters into individual bytes, what remains in the string may be a  mal-
-       formed  UTF-8  string.  For this reason, the \C escape sequence is best
+       both in and out of UTF-8 mode. Unlike a  dot,  it  always  matches  any
+       line-ending  characters.  The  feature  is provided in Perl in order to
+       match individual bytes in UTF-8 mode. Because it breaks up UTF-8  char-
+       acters  into individual bytes, what remains in the string may be a mal-
+       formed UTF-8 string. For this reason, the \C escape  sequence  is  best
        avoided.


-       PCRE does not allow \C to appear in  lookbehind  assertions  (described
-       below),  because  in UTF-8 mode this would make it impossible to calcu-
+       PCRE  does  not  allow \C to appear in lookbehind assertions (described
+       below), because in UTF-8 mode this would make it impossible  to  calcu-
        late the length of the lookbehind.



@@ -3661,96 +3663,96 @@
        An opening square bracket introduces a character class, terminated by a
        closing square bracket. A closing square bracket on its own is not spe-
        cial. If a closing square bracket is required as a member of the class,
-       it  should  be  the first data character in the class (after an initial
+       it should be the first data character in the class  (after  an  initial
        circumflex, if present) or escaped with a backslash.


-       A character class matches a single character in the subject.  In  UTF-8
-       mode,  the character may occupy more than one byte. A matched character
+       A  character  class matches a single character in the subject. In UTF-8
+       mode, the character may occupy more than one byte. A matched  character
        must be in the set of characters defined by the class, unless the first
-       character  in  the  class definition is a circumflex, in which case the
-       subject character must not be in the set defined by  the  class.  If  a
-       circumflex  is actually required as a member of the class, ensure it is
+       character in the class definition is a circumflex, in  which  case  the
+       subject  character  must  not  be in the set defined by the class. If a
+       circumflex is actually required as a member of the class, ensure it  is
        not the first character, or escape it with a backslash.


-       For example, the character class [aeiou] matches any lower case  vowel,
-       while  [^aeiou]  matches  any character that is not a lower case vowel.
+       For  example, the character class [aeiou] matches any lower case vowel,
+       while [^aeiou] matches any character that is not a  lower  case  vowel.
        Note that a circumflex is just a convenient notation for specifying the
-       characters  that  are in the class by enumerating those that are not. A
-       class that starts with a circumflex is not an assertion: it still  con-
-       sumes  a  character  from the subject string, and therefore it fails if
+       characters that are in the class by enumerating those that are  not.  A
+       class  that starts with a circumflex is not an assertion: it still con-
+       sumes a character from the subject string, and therefore  it  fails  if
        the current pointer is at the end of the string.


-       In UTF-8 mode, characters with values greater than 255 can be  included
-       in  a  class as a literal string of bytes, or by using the \x{ escaping
+       In  UTF-8 mode, characters with values greater than 255 can be included
+       in a class as a literal string of bytes, or by using the  \x{  escaping
        mechanism.


-       When caseless matching is set, any letters in a  class  represent  both
-       their  upper  case  and lower case versions, so for example, a caseless
-       [aeiou] matches "A" as well as "a", and a caseless  [^aeiou]  does  not
-       match  "A", whereas a caseful version would. In UTF-8 mode, PCRE always
-       understands the concept of case for characters whose  values  are  less
-       than  128, so caseless matching is always possible. For characters with
-       higher values, the concept of case is supported  if  PCRE  is  compiled
-       with  Unicode  property support, but not otherwise.  If you want to use
-       caseless matching for characters 128 and above, you  must  ensure  that
-       PCRE  is  compiled  with Unicode property support as well as with UTF-8
+       When  caseless  matching  is set, any letters in a class represent both
+       their upper case and lower case versions, so for  example,  a  caseless
+       [aeiou]  matches  "A"  as well as "a", and a caseless [^aeiou] does not
+       match "A", whereas a caseful version would. In UTF-8 mode, PCRE  always
+       understands  the  concept  of case for characters whose values are less
+       than 128, so caseless matching is always possible. For characters  with
+       higher  values,  the  concept  of case is supported if PCRE is compiled
+       with Unicode property support, but not otherwise.  If you want  to  use
+       caseless  matching  for  characters 128 and above, you must ensure that
+       PCRE is compiled with Unicode property support as well  as  with  UTF-8
        support.


-       Characters that might indicate line breaks are  never  treated  in  any
-       special  way  when  matching  character  classes,  whatever line-ending
-       sequence is in  use,  and  whatever  setting  of  the  PCRE_DOTALL  and
+       Characters  that  might  indicate  line breaks are never treated in any
+       special way  when  matching  character  classes,  whatever  line-ending
+       sequence  is  in  use,  and  whatever  setting  of  the PCRE_DOTALL and
        PCRE_MULTILINE options is used. A class such as [^a] always matches one
        of these characters.


-       The minus (hyphen) character can be used to specify a range of  charac-
-       ters  in  a  character  class.  For  example,  [d-m] matches any letter
-       between d and m, inclusive. If a  minus  character  is  required  in  a
-       class,  it  must  be  escaped  with a backslash or appear in a position
-       where it cannot be interpreted as indicating a range, typically as  the
+       The  minus (hyphen) character can be used to specify a range of charac-
+       ters in a character  class.  For  example,  [d-m]  matches  any  letter
+       between  d  and  m,  inclusive.  If  a minus character is required in a
+       class, it must be escaped with a backslash  or  appear  in  a  position
+       where  it cannot be interpreted as indicating a range, typically as the
        first or last character in the class.


        It is not possible to have the literal character "]" as the end charac-
-       ter of a range. A pattern such as [W-]46] is interpreted as a class  of
-       two  characters ("W" and "-") followed by a literal string "46]", so it
-       would match "W46]" or "-46]". However, if the "]"  is  escaped  with  a
-       backslash  it is interpreted as the end of range, so [W-\]46] is inter-
-       preted as a class containing a range followed by two other  characters.
-       The  octal or hexadecimal representation of "]" can also be used to end
+       ter  of a range. A pattern such as [W-]46] is interpreted as a class of
+       two characters ("W" and "-") followed by a literal string "46]", so  it
+       would  match  "W46]"  or  "-46]". However, if the "]" is escaped with a
+       backslash it is interpreted as the end of range, so [W-\]46] is  inter-
+       preted  as a class containing a range followed by two other characters.
+       The octal or hexadecimal representation of "]" can also be used to  end
        a range.


-       Ranges operate in the collating sequence of character values. They  can
-       also   be  used  for  characters  specified  numerically,  for  example
-       [\000-\037]. In UTF-8 mode, ranges can include characters whose  values
+       Ranges  operate in the collating sequence of character values. They can
+       also  be  used  for  characters  specified  numerically,  for   example
+       [\000-\037].  In UTF-8 mode, ranges can include characters whose values
        are greater than 255, for example [\x{100}-\x{2ff}].


        If a range that includes letters is used when caseless matching is set,
        it matches the letters in either case. For example, [W-c] is equivalent
-       to  [][\\^_`wxyzabc],  matched  caselessly,  and  in non-UTF-8 mode, if
-       character tables for a French locale are in  use,  [\xc8-\xcb]  matches
-       accented  E  characters in both cases. In UTF-8 mode, PCRE supports the
-       concept of case for characters with values greater than 128  only  when
+       to [][\\^_`wxyzabc], matched caselessly,  and  in  non-UTF-8  mode,  if
+       character  tables  for  a French locale are in use, [\xc8-\xcb] matches
+       accented E characters in both cases. In UTF-8 mode, PCRE  supports  the
+       concept  of  case for characters with values greater than 128 only when
        it is compiled with Unicode property support.


-       The  character types \d, \D, \p, \P, \s, \S, \w, and \W may also appear
-       in a character class, and add the characters that  they  match  to  the
+       The character types \d, \D, \p, \P, \s, \S, \w, and \W may also  appear
+       in  a  character  class,  and add the characters that they match to the
        class. For example, [\dABCDEF] matches any hexadecimal digit. A circum-
-       flex can conveniently be used with the upper case  character  types  to
-       specify  a  more  restricted  set of characters than the matching lower
-       case type. For example, the class [^\W_] matches any letter  or  digit,
+       flex  can  conveniently  be used with the upper case character types to
+       specify a more restricted set of characters  than  the  matching  lower
+       case  type.  For example, the class [^\W_] matches any letter or digit,
        but not underscore.


-       The  only  metacharacters  that are recognized in character classes are
-       backslash, hyphen (only where it can be  interpreted  as  specifying  a
-       range),  circumflex  (only  at the start), opening square bracket (only
-       when it can be interpreted as introducing a POSIX class name - see  the
-       next  section),  and  the  terminating closing square bracket. However,
+       The only metacharacters that are recognized in  character  classes  are
+       backslash,  hyphen  (only  where  it can be interpreted as specifying a
+       range), circumflex (only at the start), opening  square  bracket  (only
+       when  it can be interpreted as introducing a POSIX class name - see the
+       next section), and the terminating  closing  square  bracket.  However,
        escaping other non-alphanumeric characters does no harm.



POSIX CHARACTER CLASSES

        Perl supports the POSIX notation for character classes. This uses names
-       enclosed  by  [: and :] within the enclosing square brackets. PCRE also
+       enclosed by [: and :] within the enclosing square brackets.  PCRE  also
        supports this notation. For example,


          [01[:alpha:]%]
@@ -3773,18 +3775,18 @@
          word     "word" characters (same as \w)
          xdigit   hexadecimal digits


-       The  "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13),
-       and space (32). Notice that this list includes the VT  character  (code
+       The "space" characters are HT (9), LF (10), VT (11), FF (12), CR  (13),
+       and  space  (32). Notice that this list includes the VT character (code
        11). This makes "space" different to \s, which does not include VT (for
        Perl compatibility).


-       The name "word" is a Perl extension, and "blank"  is  a  GNU  extension
-       from  Perl  5.8. Another Perl extension is negation, which is indicated
+       The  name  "word"  is  a Perl extension, and "blank" is a GNU extension
+       from Perl 5.8. Another Perl extension is negation, which  is  indicated
        by a ^ character after the colon. For example,


          [12[:^digit:]]


-       matches "1", "2", or any non-digit. PCRE (and Perl) also recognize  the
+       matches  "1", "2", or any non-digit. PCRE (and Perl) also recognize the
        POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but
        these are not supported, and an error is given if they are encountered.


@@ -3794,24 +3796,24 @@

VERTICAL BAR

-       Vertical  bar characters are used to separate alternative patterns. For
+       Vertical bar characters are used to separate alternative patterns.  For
        example, the pattern


          gilbert|sullivan


-       matches either "gilbert" or "sullivan". Any number of alternatives  may
-       appear,  and  an  empty  alternative  is  permitted (matching the empty
+       matches  either "gilbert" or "sullivan". Any number of alternatives may
+       appear, and an empty  alternative  is  permitted  (matching  the  empty
        string). The matching process tries each alternative in turn, from left
-       to  right, and the first one that succeeds is used. If the alternatives
-       are within a subpattern (defined below), "succeeds" means matching  the
+       to right, and the first one that succeeds is used. If the  alternatives
+       are  within a subpattern (defined below), "succeeds" means matching the
        rest of the main pattern as well as the alternative in the subpattern.



INTERNAL OPTION SETTING

-       The  settings  of  the  PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
-       PCRE_EXTENDED options (which are Perl-compatible) can be  changed  from
-       within  the  pattern  by  a  sequence  of  Perl option letters enclosed
+       The settings of the  PCRE_CASELESS,  PCRE_MULTILINE,  PCRE_DOTALL,  and
+       PCRE_EXTENDED  options  (which are Perl-compatible) can be changed from
+       within the pattern by  a  sequence  of  Perl  option  letters  enclosed
        between "(?" and ")".  The option letters are


          i  for PCRE_CASELESS
@@ -3821,44 +3823,44 @@


        For example, (?im) sets caseless, multiline matching. It is also possi-
        ble to unset these options by preceding the letter with a hyphen, and a
-       combined setting and unsetting such as (?im-sx), which sets  PCRE_CASE-
-       LESS  and PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED,
-       is also permitted. If a  letter  appears  both  before  and  after  the
+       combined  setting and unsetting such as (?im-sx), which sets PCRE_CASE-
+       LESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and  PCRE_EXTENDED,
+       is  also  permitted.  If  a  letter  appears  both before and after the
        hyphen, the option is unset.


-       The  PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA
-       can be changed in the same way as the Perl-compatible options by  using
+       The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and  PCRE_EXTRA
+       can  be changed in the same way as the Perl-compatible options by using
        the characters J, U and X respectively.


-       When  an option change occurs at top level (that is, not inside subpat-
-       tern parentheses), the change applies to the remainder of  the  pattern
+       When an option change occurs at top level (that is, not inside  subpat-
+       tern  parentheses),  the change applies to the remainder of the pattern
        that follows.  If the change is placed right at the start of a pattern,
        PCRE extracts it into the global options (and it will therefore show up
        in data extracted by the pcre_fullinfo() function).


-       An  option  change  within a subpattern (see below for a description of
+       An option change within a subpattern (see below for  a  description  of
        subpatterns) affects only that part of the current pattern that follows
        it, so


          (a(?i)b)c


        matches abc and aBc and no other strings (assuming PCRE_CASELESS is not
-       used).  By this means, options can be made to have  different  settings
-       in  different parts of the pattern. Any changes made in one alternative
-       do carry on into subsequent branches within the  same  subpattern.  For
+       used).   By  this means, options can be made to have different settings
+       in different parts of the pattern. Any changes made in one  alternative
+       do  carry  on  into subsequent branches within the same subpattern. For
        example,


          (a(?i)b|c)


-       matches  "ab",  "aB",  "c",  and "C", even though when matching "C" the
-       first branch is abandoned before the option setting.  This  is  because
-       the  effects  of option settings happen at compile time. There would be
+       matches "ab", "aB", "c", and "C", even though  when  matching  "C"  the
+       first  branch  is  abandoned before the option setting. This is because
+       the effects of option settings happen at compile time. There  would  be
        some very weird behaviour otherwise.


-       Note: There are other PCRE-specific options that  can  be  set  by  the
-       application  when  the  compile  or match functions are called. In some
-       cases the pattern can contain special  leading  sequences  to  override
-       what  the  application  has set or what has been defaulted. Details are
+       Note:  There  are  other  PCRE-specific  options that can be set by the
+       application when the compile or match functions  are  called.  In  some
+       cases  the  pattern  can  contain special leading sequences to override
+       what the application has set or what has been  defaulted.  Details  are
        given in the section entitled "Newline sequences" above.



@@ -3871,18 +3873,18 @@

          cat(aract|erpillar|)


-       matches  one  of the words "cat", "cataract", or "caterpillar". Without
-       the parentheses, it would match  "cataract",  "erpillar"  or  an  empty
+       matches one of the words "cat", "cataract", or  "caterpillar".  Without
+       the  parentheses,  it  would  match  "cataract", "erpillar" or an empty
        string.


-       2.  It  sets  up  the  subpattern as a capturing subpattern. This means
-       that, when the whole pattern  matches,  that  portion  of  the  subject
+       2. It sets up the subpattern as  a  capturing  subpattern.  This  means
+       that,  when  the  whole  pattern  matches,  that portion of the subject
        string that matched the subpattern is passed back to the caller via the
-       ovector argument of pcre_exec(). Opening parentheses are  counted  from
-       left  to  right  (starting  from 1) to obtain numbers for the capturing
+       ovector  argument  of pcre_exec(). Opening parentheses are counted from
+       left to right (starting from 1) to obtain  numbers  for  the  capturing
        subpatterns.


-       For example, if the string "the red king" is matched against  the  pat-
+       For  example,  if the string "the red king" is matched against the pat-
        tern


          the ((red|white) (king|queen))
@@ -3890,12 +3892,12 @@
        the captured substrings are "red king", "red", and "king", and are num-
        bered 1, 2, and 3, respectively.


-       The fact that plain parentheses fulfil  two  functions  is  not  always
-       helpful.   There are often times when a grouping subpattern is required
-       without a capturing requirement. If an opening parenthesis is  followed
-       by  a question mark and a colon, the subpattern does not do any captur-
-       ing, and is not counted when computing the  number  of  any  subsequent
-       capturing  subpatterns. For example, if the string "the white queen" is
+       The  fact  that  plain  parentheses  fulfil two functions is not always
+       helpful.  There are often times when a grouping subpattern is  required
+       without  a capturing requirement. If an opening parenthesis is followed
+       by a question mark and a colon, the subpattern does not do any  captur-
+       ing,  and  is  not  counted when computing the number of any subsequent
+       capturing subpatterns. For example, if the string "the white queen"  is
        matched against the pattern


          the ((?:red|white) (king|queen))
@@ -3903,80 +3905,80 @@
        the captured substrings are "white queen" and "queen", and are numbered
        1 and 2. The maximum number of capturing subpatterns is 65535.


-       As  a  convenient shorthand, if any option settings are required at the
-       start of a non-capturing subpattern,  the  option  letters  may  appear
+       As a convenient shorthand, if any option settings are required  at  the
+       start  of  a  non-capturing  subpattern,  the option letters may appear
        between the "?" and the ":". Thus the two patterns


          (?i:saturday|sunday)
          (?:(?i)saturday|sunday)


        match exactly the same set of strings. Because alternative branches are
-       tried from left to right, and options are not reset until  the  end  of
-       the  subpattern is reached, an option setting in one branch does affect
-       subsequent branches, so the above patterns match "SUNDAY"  as  well  as
+       tried  from  left  to right, and options are not reset until the end of
+       the subpattern is reached, an option setting in one branch does  affect
+       subsequent  branches,  so  the above patterns match "SUNDAY" as well as
        "Saturday".



DUPLICATE SUBPATTERN NUMBERS

        Perl 5.10 introduced a feature whereby each alternative in a subpattern
-       uses the same numbers for its capturing parentheses. Such a  subpattern
-       starts  with (?| and is itself a non-capturing subpattern. For example,
+       uses  the same numbers for its capturing parentheses. Such a subpattern
+       starts with (?| and is itself a non-capturing subpattern. For  example,
        consider this pattern:


          (?|(Sat)ur|(Sun))day


-       Because the two alternatives are inside a (?| group, both sets of  cap-
-       turing  parentheses  are  numbered one. Thus, when the pattern matches,
-       you can look at captured substring number  one,  whichever  alternative
-       matched.  This  construct  is useful when you want to capture part, but
+       Because  the two alternatives are inside a (?| group, both sets of cap-
+       turing parentheses are numbered one. Thus, when  the  pattern  matches,
+       you  can  look  at captured substring number one, whichever alternative
+       matched. This construct is useful when you want to  capture  part,  but
        not all, of one of a number of alternatives. Inside a (?| group, paren-
-       theses  are  numbered as usual, but the number is reset at the start of
-       each branch. The numbers of any capturing buffers that follow the  sub-
-       pattern  start after the highest number used in any branch. The follow-
-       ing example is taken from the Perl documentation.  The  numbers  under-
+       theses are numbered as usual, but the number is reset at the  start  of
+       each  branch. The numbers of any capturing buffers that follow the sub-
+       pattern start after the highest number used in any branch. The  follow-
+       ing  example  is taken from the Perl documentation.  The numbers under-
        neath show in which buffer the captured content will be stored.


          # before  ---------------branch-reset----------- after
          / ( a )  (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
          # 1            2         2  3        2     3     4


-       A  backreference  or  a  recursive call to a numbered subpattern always
+       A backreference or a recursive call to  a  numbered  subpattern  always
        refers to the first one in the pattern with the given number.


-       An alternative approach to using this "branch reset" feature is to  use
+       An  alternative approach to using this "branch reset" feature is to use
        duplicate named subpatterns, as described in the next section.



NAMED SUBPATTERNS

-       Identifying  capturing  parentheses  by number is simple, but it can be
-       very hard to keep track of the numbers in complicated  regular  expres-
-       sions.  Furthermore,  if  an  expression  is  modified, the numbers may
-       change. To help with this difficulty, PCRE supports the naming of  sub-
+       Identifying capturing parentheses by number is simple, but  it  can  be
+       very  hard  to keep track of the numbers in complicated regular expres-
+       sions. Furthermore, if an  expression  is  modified,  the  numbers  may
+       change.  To help with this difficulty, PCRE supports the naming of sub-
        patterns. This feature was not added to Perl until release 5.10. Python
-       had the feature earlier, and PCRE introduced it at release  4.0,  using
-       the  Python syntax. PCRE now supports both the Perl and the Python syn-
+       had  the  feature earlier, and PCRE introduced it at release 4.0, using
+       the Python syntax. PCRE now supports both the Perl and the Python  syn-
        tax.


-       In PCRE, a subpattern can be named in one of three  ways:  (?<name>...)
-       or  (?'name'...)  as in Perl, or (?P<name>...) as in Python. References
+       In  PCRE,  a subpattern can be named in one of three ways: (?<name>...)
+       or (?'name'...) as in Perl, or (?P<name>...) as in  Python.  References
        to capturing parentheses from other parts of the pattern, such as back-
-       references,  recursion,  and conditions, can be made by name as well as
+       references, recursion, and conditions, can be made by name as  well  as
        by number.


-       Names consist of up to  32  alphanumeric  characters  and  underscores.
-       Named  capturing  parentheses  are  still  allocated numbers as well as
-       names, exactly as if the names were not present. The PCRE API  provides
+       Names  consist  of  up  to  32 alphanumeric characters and underscores.
+       Named capturing parentheses are still  allocated  numbers  as  well  as
+       names,  exactly as if the names were not present. The PCRE API provides
        function calls for extracting the name-to-number translation table from
        a compiled pattern. There is also a convenience function for extracting
        a captured substring by name.


-       By  default, a name must be unique within a pattern, but it is possible
+       By default, a name must be unique within a pattern, but it is  possible
        to relax this constraint by setting the PCRE_DUPNAMES option at compile
-       time.  This  can  be useful for patterns where only one instance of the
-       named parentheses can match. Suppose you want to match the  name  of  a
-       weekday,  either as a 3-letter abbreviation or as the full name, and in
+       time. This can be useful for patterns where only one  instance  of  the
+       named  parentheses  can  match. Suppose you want to match the name of a
+       weekday, either as a 3-letter abbreviation or as the full name, and  in
        both cases you want to extract the abbreviation. This pattern (ignoring
        the line breaks) does the job:


@@ -3986,26 +3988,26 @@
          (?<DN>Thu)(?:rsday)?|
          (?<DN>Sat)(?:urday)?


-       There  are  five capturing substrings, but only one is ever set after a
+       There are five capturing substrings, but only one is ever set  after  a
        match.  (An alternative way of solving this problem is to use a "branch
        reset" subpattern, as described in the previous section.)


-       The  convenience  function  for extracting the data by name returns the
-       substring for the first (and in this example, the only)  subpattern  of
-       that  name  that  matched.  This saves searching to find which numbered
-       subpattern it was. If you make a reference to a non-unique  named  sub-
-       pattern  from elsewhere in the pattern, the one that corresponds to the
-       lowest number is used. For further details of the interfaces  for  han-
+       The convenience function for extracting the data by  name  returns  the
+       substring  for  the first (and in this example, the only) subpattern of
+       that name that matched. This saves searching  to  find  which  numbered
+       subpattern  it  was. If you make a reference to a non-unique named sub-
+       pattern from elsewhere in the pattern, the one that corresponds to  the
+       lowest  number  is used. For further details of the interfaces for han-
        dling named subpatterns, see the pcreapi documentation.


        Warning: You cannot use different names to distinguish between two sub-
-       patterns with the same number (see the previous section)  because  PCRE
+       patterns  with  the same number (see the previous section) because PCRE
        uses only the numbers when matching.



REPETITION

-       Repetition  is  specified  by  quantifiers, which can follow any of the
+       Repetition is specified by quantifiers, which can  follow  any  of  the
        following items:


          a literal data character
@@ -4018,17 +4020,17 @@
          a back reference (see next section)
          a parenthesized subpattern (unless it is an assertion)


-       The general repetition quantifier specifies a minimum and maximum  num-
-       ber  of  permitted matches, by giving the two numbers in curly brackets
-       (braces), separated by a comma. The numbers must be  less  than  65536,
+       The  general repetition quantifier specifies a minimum and maximum num-
+       ber of permitted matches, by giving the two numbers in  curly  brackets
+       (braces),  separated  by  a comma. The numbers must be less than 65536,
        and the first must be less than or equal to the second. For example:


          z{2,4}


-       matches  "zz",  "zzz",  or  "zzzz". A closing brace on its own is not a
-       special character. If the second number is omitted, but  the  comma  is
-       present,  there  is  no upper limit; if the second number and the comma
-       are both omitted, the quantifier specifies an exact number of  required
+       matches "zz", "zzz", or "zzzz". A closing brace on its  own  is  not  a
+       special  character.  If  the second number is omitted, but the comma is
+       present, there is no upper limit; if the second number  and  the  comma
+       are  both omitted, the quantifier specifies an exact number of required
        matches. Thus


          [aeiou]{3,}
@@ -4037,49 +4039,49 @@


          \d{8}


-       matches  exactly  8  digits. An opening curly bracket that appears in a
-       position where a quantifier is not allowed, or one that does not  match
-       the  syntax of a quantifier, is taken as a literal character. For exam-
+       matches exactly 8 digits. An opening curly bracket that  appears  in  a
+       position  where a quantifier is not allowed, or one that does not match
+       the syntax of a quantifier, is taken as a literal character. For  exam-
        ple, {,6} is not a quantifier, but a literal string of four characters.


-       In UTF-8 mode, quantifiers apply to UTF-8  characters  rather  than  to
+       In  UTF-8  mode,  quantifiers  apply to UTF-8 characters rather than to
        individual bytes. Thus, for example, \x{100}{2} matches two UTF-8 char-
        acters, each of which is represented by a two-byte sequence. Similarly,
        when Unicode property support is available, \X{3} matches three Unicode
-       extended sequences, each of which may be several bytes long  (and  they
+       extended  sequences,  each of which may be several bytes long (and they
        may be of different lengths).


        The quantifier {0} is permitted, causing the expression to behave as if
        the previous item and the quantifier were not present. This may be use-
-       ful  for  subpatterns that are referenced as subroutines from elsewhere
+       ful for subpatterns that are referenced as subroutines  from  elsewhere
        in the pattern. Items other than subpatterns that have a {0} quantifier
        are omitted from the compiled pattern.


-       For  convenience, the three most common quantifiers have single-charac-
+       For convenience, the three most common quantifiers have  single-charac-
        ter abbreviations:


          *    is equivalent to {0,}
          +    is equivalent to {1,}
          ?    is equivalent to {0,1}


-       It is possible to construct infinite loops by  following  a  subpattern
+       It  is  possible  to construct infinite loops by following a subpattern
        that can match no characters with a quantifier that has no upper limit,
        for example:


          (a?)*


        Earlier versions of Perl and PCRE used to give an error at compile time
-       for  such  patterns. However, because there are cases where this can be
-       useful, such patterns are now accepted, but if any  repetition  of  the
-       subpattern  does in fact match no characters, the loop is forcibly bro-
+       for such patterns. However, because there are cases where this  can  be
+       useful,  such  patterns  are now accepted, but if any repetition of the
+       subpattern does in fact match no characters, the loop is forcibly  bro-
        ken.


-       By default, the quantifiers are "greedy", that is, they match  as  much
-       as  possible  (up  to  the  maximum number of permitted times), without
-       causing the rest of the pattern to fail. The classic example  of  where
+       By  default,  the quantifiers are "greedy", that is, they match as much
+       as possible (up to the maximum  number  of  permitted  times),  without
+       causing  the  rest of the pattern to fail. The classic example of where
        this gives problems is in trying to match comments in C programs. These
-       appear between /* and */ and within the comment,  individual  *  and  /
-       characters  may  appear. An attempt to match C comments by applying the
+       appear  between  /*  and  */ and within the comment, individual * and /
+       characters may appear. An attempt to match C comments by  applying  the
        pattern


          /\*.*\*/
@@ -4088,19 +4090,19 @@


          /* first comment */  not comment  /* second comment */


-       fails, because it matches the entire string owing to the greediness  of
+       fails,  because it matches the entire string owing to the greediness of
        the .*  item.


-       However,  if  a quantifier is followed by a question mark, it ceases to
+       However, if a quantifier is followed by a question mark, it  ceases  to
        be greedy, and instead matches the minimum number of times possible, so
        the pattern


          /\*.*?\*/


-       does  the  right  thing with the C comments. The meaning of the various
-       quantifiers is not otherwise changed,  just  the  preferred  number  of
-       matches.   Do  not  confuse this use of question mark with its use as a
-       quantifier in its own right. Because it has two uses, it can  sometimes
+       does the right thing with the C comments. The meaning  of  the  various
+       quantifiers  is  not  otherwise  changed,  just the preferred number of
+       matches.  Do not confuse this use of question mark with its  use  as  a
+       quantifier  in its own right. Because it has two uses, it can sometimes
        appear doubled, as in


          \d??\d
@@ -4108,36 +4110,36 @@
        which matches one digit by preference, but can match two if that is the
        only way the rest of the pattern matches.


-       If the PCRE_UNGREEDY option is set (an option that is not available  in
-       Perl),  the  quantifiers are not greedy by default, but individual ones
-       can be made greedy by following them with a  question  mark.  In  other
+       If  the PCRE_UNGREEDY option is set (an option that is not available in
+       Perl), the quantifiers are not greedy by default, but  individual  ones
+       can  be  made  greedy  by following them with a question mark. In other
        words, it inverts the default behaviour.


-       When  a  parenthesized  subpattern  is quantified with a minimum repeat
-       count that is greater than 1 or with a limited maximum, more memory  is
-       required  for  the  compiled  pattern, in proportion to the size of the
+       When a parenthesized subpattern is quantified  with  a  minimum  repeat
+       count  that is greater than 1 or with a limited maximum, more memory is
+       required for the compiled pattern, in proportion to  the  size  of  the
        minimum or maximum.


        If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equiv-
-       alent  to  Perl's  /s) is set, thus allowing the dot to match newlines,
-       the pattern is implicitly anchored, because whatever  follows  will  be
-       tried  against every character position in the subject string, so there
-       is no point in retrying the overall match at  any  position  after  the
-       first.  PCRE  normally treats such a pattern as though it were preceded
+       alent to Perl's /s) is set, thus allowing the dot  to  match  newlines,
+       the  pattern  is  implicitly anchored, because whatever follows will be
+       tried against every character position in the subject string, so  there
+       is  no  point  in  retrying the overall match at any position after the
+       first. PCRE normally treats such a pattern as though it  were  preceded
        by \A.


-       In cases where it is known that the subject  string  contains  no  new-
-       lines,  it  is  worth setting PCRE_DOTALL in order to obtain this opti-
+       In  cases  where  it  is known that the subject string contains no new-
+       lines, it is worth setting PCRE_DOTALL in order to  obtain  this  opti-
        mization, or alternatively using ^ to indicate anchoring explicitly.


-       However, there is one situation where the optimization cannot be  used.
-       When  .*   is  inside  capturing  parentheses that are the subject of a
-       backreference elsewhere in the pattern, a match at the start  may  fail
+       However,  there is one situation where the optimization cannot be used.
+       When .*  is inside capturing parentheses that  are  the  subject  of  a
+       backreference  elsewhere  in the pattern, a match at the start may fail
        where a later one succeeds. Consider, for example:


          (.*)abc\1


-       If  the subject is "xyz123abc123" the match point is the fourth charac-
+       If the subject is "xyz123abc123" the match point is the fourth  charac-
        ter. For this reason, such a pattern is not implicitly anchored.


        When a capturing subpattern is repeated, the value captured is the sub-
@@ -4146,8 +4148,8 @@
          (tweedle[dume]{3}\s*)+


        has matched "tweedledum tweedledee" the value of the captured substring
-       is "tweedledee". However, if there are  nested  capturing  subpatterns,
-       the  corresponding captured values may have been set in previous itera-
+       is  "tweedledee".  However,  if there are nested capturing subpatterns,
+       the corresponding captured values may have been set in previous  itera-
        tions. For example, after


          /(a|(b))+/
@@ -4157,53 +4159,53 @@


ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS

-       With both maximizing ("greedy") and minimizing ("ungreedy"  or  "lazy")
-       repetition,  failure  of what follows normally causes the repeated item
-       to be re-evaluated to see if a different number of repeats  allows  the
-       rest  of  the pattern to match. Sometimes it is useful to prevent this,
-       either to change the nature of the match, or to cause it  fail  earlier
-       than  it otherwise might, when the author of the pattern knows there is
+       With  both  maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
+       repetition, failure of what follows normally causes the  repeated  item
+       to  be  re-evaluated to see if a different number of repeats allows the
+       rest of the pattern to match. Sometimes it is useful to  prevent  this,
+       either  to  change the nature of the match, or to cause it fail earlier
+       than it otherwise might, when the author of the pattern knows there  is
        no point in carrying on.


-       Consider, for example, the pattern \d+foo when applied to  the  subject
+       Consider,  for  example, the pattern \d+foo when applied to the subject
        line


          123456bar


        After matching all 6 digits and then failing to match "foo", the normal
-       action of the matcher is to try again with only 5 digits  matching  the
-       \d+  item,  and  then  with  4,  and  so on, before ultimately failing.
-       "Atomic grouping" (a term taken from Jeffrey  Friedl's  book)  provides
-       the  means for specifying that once a subpattern has matched, it is not
+       action  of  the matcher is to try again with only 5 digits matching the
+       \d+ item, and then with  4,  and  so  on,  before  ultimately  failing.
+       "Atomic  grouping"  (a  term taken from Jeffrey Friedl's book) provides
+       the means for specifying that once a subpattern has matched, it is  not
        to be re-evaluated in this way.


-       If we use atomic grouping for the previous example, the  matcher  gives
-       up  immediately  on failing to match "foo" the first time. The notation
+       If  we  use atomic grouping for the previous example, the matcher gives
+       up immediately on failing to match "foo" the first time.  The  notation
        is a kind of special parenthesis, starting with (?> as in this example:


          (?>\d+)foo


-       This kind of parenthesis "locks up" the  part of the  pattern  it  con-
-       tains  once  it  has matched, and a failure further into the pattern is
-       prevented from backtracking into it. Backtracking past it  to  previous
+       This  kind  of  parenthesis "locks up" the  part of the pattern it con-
+       tains once it has matched, and a failure further into  the  pattern  is
+       prevented  from  backtracking into it. Backtracking past it to previous
        items, however, works as normal.


-       An  alternative  description  is that a subpattern of this type matches
-       the string of characters that an  identical  standalone  pattern  would
+       An alternative description is that a subpattern of  this  type  matches
+       the  string  of  characters  that an identical standalone pattern would
        match, if anchored at the current point in the subject string.


        Atomic grouping subpatterns are not capturing subpatterns. Simple cases
        such as the above example can be thought of as a maximizing repeat that
-       must  swallow  everything  it can. So, while both \d+ and \d+? are pre-
-       pared to adjust the number of digits they match in order  to  make  the
+       must swallow everything it can. So, while both \d+ and  \d+?  are  pre-
+       pared  to  adjust  the number of digits they match in order to make the
        rest of the pattern match, (?>\d+) can only match an entire sequence of
        digits.


-       Atomic groups in general can of course contain arbitrarily  complicated
-       subpatterns,  and  can  be  nested. However, when the subpattern for an
+       Atomic  groups in general can of course contain arbitrarily complicated
+       subpatterns, and can be nested. However, when  the  subpattern  for  an
        atomic group is just a single repeated item, as in the example above, a
-       simpler  notation,  called  a "possessive quantifier" can be used. This
-       consists of an additional + character  following  a  quantifier.  Using
+       simpler notation, called a "possessive quantifier" can  be  used.  This
+       consists  of  an  additional  + character following a quantifier. Using
        this notation, the previous example can be rewritten as


          \d++foo
@@ -4213,45 +4215,45 @@


          (abc|xyz){2,3}+


-       Possessive  quantifiers  are  always  greedy;  the   setting   of   the
+       Possessive   quantifiers   are   always  greedy;  the  setting  of  the
        PCRE_UNGREEDY option is ignored. They are a convenient notation for the
-       simpler forms of atomic group. However, there is no difference  in  the
-       meaning  of  a  possessive  quantifier and the equivalent atomic group,
-       though there may be a performance  difference;  possessive  quantifiers
+       simpler  forms  of atomic group. However, there is no difference in the
+       meaning of a possessive quantifier and  the  equivalent  atomic  group,
+       though  there  may  be a performance difference; possessive quantifiers
        should be slightly faster.


-       The  possessive  quantifier syntax is an extension to the Perl 5.8 syn-
-       tax.  Jeffrey Friedl originated the idea (and the name)  in  the  first
+       The possessive quantifier syntax is an extension to the Perl  5.8  syn-
+       tax.   Jeffrey  Friedl  originated the idea (and the name) in the first
        edition of his book. Mike McCloskey liked it, so implemented it when he
-       built Sun's Java package, and PCRE copied it from there. It  ultimately
+       built  Sun's Java package, and PCRE copied it from there. It ultimately
        found its way into Perl at release 5.10.


        PCRE has an optimization that automatically "possessifies" certain sim-
-       ple pattern constructs. For example, the sequence  A+B  is  treated  as
-       A++B  because  there is no point in backtracking into a sequence of A's
+       ple  pattern  constructs.  For  example, the sequence A+B is treated as
+       A++B because there is no point in backtracking into a sequence  of  A's
        when B must follow.


-       When a pattern contains an unlimited repeat inside  a  subpattern  that
-       can  itself  be  repeated  an  unlimited number of times, the use of an
-       atomic group is the only way to avoid some  failing  matches  taking  a
+       When  a  pattern  contains an unlimited repeat inside a subpattern that
+       can itself be repeated an unlimited number of  times,  the  use  of  an
+       atomic  group  is  the  only way to avoid some failing matches taking a
        very long time indeed. The pattern


          (\D+|<\d+>)*[!?]


-       matches  an  unlimited number of substrings that either consist of non-
-       digits, or digits enclosed in <>, followed by either ! or  ?.  When  it
+       matches an unlimited number of substrings that either consist  of  non-
+       digits,  or  digits  enclosed in <>, followed by either ! or ?. When it
        matches, it runs quickly. However, if it is applied to


          aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa


-       it  takes  a  long  time  before reporting failure. This is because the
-       string can be divided between the internal \D+ repeat and the  external
-       *  repeat  in  a  large  number of ways, and all have to be tried. (The
-       example uses [!?] rather than a single character at  the  end,  because
-       both  PCRE  and  Perl have an optimization that allows for fast failure
-       when a single character is used. They remember the last single  charac-
-       ter  that  is required for a match, and fail early if it is not present
-       in the string.) If the pattern is changed so that  it  uses  an  atomic
+       it takes a long time before reporting  failure.  This  is  because  the
+       string  can be divided between the internal \D+ repeat and the external
+       * repeat in a large number of ways, and all  have  to  be  tried.  (The
+       example  uses  [!?]  rather than a single character at the end, because
+       both PCRE and Perl have an optimization that allows  for  fast  failure
+       when  a single character is used. They remember the last single charac-
+       ter that is required for a match, and fail early if it is  not  present
+       in  the  string.)  If  the pattern is changed so that it uses an atomic
        group, like this:


          ((?>\D+)|<\d+>)*[!?]
@@ -4263,37 +4265,37 @@


        Outside a character class, a backslash followed by a digit greater than
        0 (and possibly further digits) is a back reference to a capturing sub-
-       pattern  earlier  (that is, to its left) in the pattern, provided there
+       pattern earlier (that is, to its left) in the pattern,  provided  there
        have been that many previous capturing left parentheses.


        However, if the decimal number following the backslash is less than 10,
-       it  is  always  taken  as a back reference, and causes an error only if
-       there are not that many capturing left parentheses in the  entire  pat-
-       tern.  In  other words, the parentheses that are referenced need not be
-       to the left of the reference for numbers less than 10. A "forward  back
-       reference"  of  this  type can make sense when a repetition is involved
-       and the subpattern to the right has participated in an  earlier  itera-
+       it is always taken as a back reference, and causes  an  error  only  if
+       there  are  not that many capturing left parentheses in the entire pat-
+       tern. In other words, the parentheses that are referenced need  not  be
+       to  the left of the reference for numbers less than 10. A "forward back
+       reference" of this type can make sense when a  repetition  is  involved
+       and  the  subpattern to the right has participated in an earlier itera-
        tion.


-       It  is  not  possible to have a numerical "forward back reference" to a
-       subpattern whose number is 10 or  more  using  this  syntax  because  a
-       sequence  such  as  \50 is interpreted as a character defined in octal.
+       It is not possible to have a numerical "forward back  reference"  to  a
+       subpattern  whose  number  is  10  or  more using this syntax because a
+       sequence such as \50 is interpreted as a character  defined  in  octal.
        See the subsection entitled "Non-printing characters" above for further
-       details  of  the  handling of digits following a backslash. There is no
-       such problem when named parentheses are used. A back reference  to  any
+       details of the handling of digits following a backslash.  There  is  no
+       such  problem  when named parentheses are used. A back reference to any
        subpattern is possible using named parentheses (see below).


-       Another  way  of  avoiding  the ambiguity inherent in the use of digits
+       Another way of avoiding the ambiguity inherent in  the  use  of  digits
        following a backslash is to use the \g escape sequence, which is a fea-
-       ture  introduced  in  Perl  5.10.  This  escape  must be followed by an
-       unsigned number or a negative number, optionally  enclosed  in  braces.
+       ture introduced in Perl 5.10.  This  escape  must  be  followed  by  an
+       unsigned  number  or  a negative number, optionally enclosed in braces.
        These examples are all identical:


          (ring), \1
          (ring), \g1
          (ring), \g{1}


-       An  unsigned number specifies an absolute reference without the ambigu-
+       An unsigned number specifies an absolute reference without the  ambigu-
        ity that is present in the older syntax. It is also useful when literal
        digits follow the reference. A negative number is a relative reference.
        Consider this example:
@@ -4301,33 +4303,33 @@
          (abc(def)ghi)\g{-1}


        The sequence \g{-1} is a reference to the most recently started captur-
-       ing  subpattern  before \g, that is, is it equivalent to \2. Similarly,
+       ing subpattern before \g, that is, is it equivalent to  \2.  Similarly,
        \g{-2} would be equivalent to \1. The use of relative references can be
-       helpful  in  long  patterns,  and  also in patterns that are created by
+       helpful in long patterns, and also in  patterns  that  are  created  by
        joining together fragments that contain references within themselves.


-       A back reference matches whatever actually matched the  capturing  sub-
-       pattern  in  the  current subject string, rather than anything matching
+       A  back  reference matches whatever actually matched the capturing sub-
+       pattern in the current subject string, rather  than  anything  matching
        the subpattern itself (see "Subpatterns as subroutines" below for a way
        of doing that). So the pattern


          (sens|respons)e and \1ibility


-       matches  "sense and sensibility" and "response and responsibility", but
-       not "sense and responsibility". If caseful matching is in force at  the
-       time  of the back reference, the case of letters is relevant. For exam-
+       matches "sense and sensibility" and "response and responsibility",  but
+       not  "sense and responsibility". If caseful matching is in force at the
+       time of the back reference, the case of letters is relevant. For  exam-
        ple,


          ((?i)rah)\s+\1


-       matches "rah rah" and "RAH RAH", but not "RAH  rah",  even  though  the
+       matches  "rah  rah"  and  "RAH RAH", but not "RAH rah", even though the
        original capturing subpattern is matched caselessly.


-       There  are  several  different ways of writing back references to named
-       subpatterns. The .NET syntax \k{name} and the Perl syntax  \k<name>  or
-       \k'name'  are supported, as is the Python syntax (?P=name). Perl 5.10's
+       There are several different ways of writing back  references  to  named
+       subpatterns.  The  .NET syntax \k{name} and the Perl syntax \k<name> or
+       \k'name' are supported, as is the Python syntax (?P=name). Perl  5.10's
        unified back reference syntax, in which \g can be used for both numeric
-       and  named  references,  is  also supported. We could rewrite the above
+       and named references, is also supported. We  could  rewrite  the  above
        example in any of the following ways:


          (?<p1>(?i)rah)\s+\k<p1>
@@ -4335,57 +4337,57 @@
          (?P<p1>(?i)rah)\s+(?P=p1)
          (?<p1>(?i)rah)\s+\g{p1}


-       A subpattern that is referenced by  name  may  appear  in  the  pattern
+       A  subpattern  that  is  referenced  by  name may appear in the pattern
        before or after the reference.


-       There  may be more than one back reference to the same subpattern. If a
-       subpattern has not actually been used in a particular match,  any  back
+       There may be more than one back reference to the same subpattern. If  a
+       subpattern  has  not actually been used in a particular match, any back
        references to it always fail. For example, the pattern


          (a|(bc))\2


-       always  fails if it starts to match "a" rather than "bc". Because there
-       may be many capturing parentheses in a pattern,  all  digits  following
-       the  backslash  are taken as part of a potential back reference number.
+       always fails if it starts to match "a" rather than "bc". Because  there
+       may  be  many  capturing parentheses in a pattern, all digits following
+       the backslash are taken as part of a potential back  reference  number.
        If the pattern continues with a digit character, some delimiter must be
-       used  to  terminate  the back reference. If the PCRE_EXTENDED option is
-       set, this can be whitespace.  Otherwise an  empty  comment  (see  "Com-
+       used to terminate the back reference. If the  PCRE_EXTENDED  option  is
+       set,  this  can  be  whitespace.  Otherwise an empty comment (see "Com-
        ments" below) can be used.


-       A  back reference that occurs inside the parentheses to which it refers
-       fails when the subpattern is first used, so, for example,  (a\1)  never
-       matches.   However,  such references can be useful inside repeated sub-
+       A back reference that occurs inside the parentheses to which it  refers
+       fails  when  the subpattern is first used, so, for example, (a\1) never
+       matches.  However, such references can be useful inside  repeated  sub-
        patterns. For example, the pattern


          (a|b\1)+


        matches any number of "a"s and also "aba", "ababbaa" etc. At each iter-
-       ation  of  the  subpattern,  the  back  reference matches the character
-       string corresponding to the previous iteration. In order  for  this  to
-       work,  the  pattern must be such that the first iteration does not need
-       to match the back reference. This can be done using alternation, as  in
+       ation of the subpattern,  the  back  reference  matches  the  character
+       string  corresponding  to  the previous iteration. In order for this to
+       work, the pattern must be such that the first iteration does  not  need
+       to  match the back reference. This can be done using alternation, as in
        the example above, or by a quantifier with a minimum of zero.



ASSERTIONS

-       An  assertion  is  a  test on the characters following or preceding the
-       current matching point that does not actually consume  any  characters.
-       The  simple  assertions  coded  as  \b, \B, \A, \G, \Z, \z, ^ and $ are
+       An assertion is a test on the characters  following  or  preceding  the
+       current  matching  point that does not actually consume any characters.
+       The simple assertions coded as \b, \B, \A, \G, \Z,  \z,  ^  and  $  are
        described above.


-       More complicated assertions are coded as  subpatterns.  There  are  two
-       kinds:  those  that  look  ahead of the current position in the subject
-       string, and those that look  behind  it.  An  assertion  subpattern  is
-       matched  in  the  normal way, except that it does not cause the current
+       More  complicated  assertions  are  coded as subpatterns. There are two
+       kinds: those that look ahead of the current  position  in  the  subject
+       string,  and  those  that  look  behind  it. An assertion subpattern is
+       matched in the normal way, except that it does not  cause  the  current
        matching position to be changed.


-       Assertion subpatterns are not capturing subpatterns,  and  may  not  be
-       repeated,  because  it  makes no sense to assert the same thing several
-       times. If any kind of assertion contains capturing  subpatterns  within
-       it,  these are counted for the purposes of numbering the capturing sub-
+       Assertion  subpatterns  are  not  capturing subpatterns, and may not be
+       repeated, because it makes no sense to assert the  same  thing  several
+       times.  If  any kind of assertion contains capturing subpatterns within
+       it, these are counted for the purposes of numbering the capturing  sub-
        patterns in the whole pattern.  However, substring capturing is carried
-       out  only  for  positive assertions, because it does not make sense for
+       out only for positive assertions, because it does not  make  sense  for
        negative assertions.


    Lookahead assertions
@@ -4395,37 +4397,37 @@


          \w+(?=;)


-       matches  a word followed by a semicolon, but does not include the semi-
+       matches a word followed by a semicolon, but does not include the  semi-
        colon in the match, and


          foo(?!bar)


-       matches any occurrence of "foo" that is not  followed  by  "bar".  Note
+       matches  any  occurrence  of  "foo" that is not followed by "bar". Note
        that the apparently similar pattern


          (?!foo)bar


-       does  not  find  an  occurrence  of "bar" that is preceded by something
-       other than "foo"; it finds any occurrence of "bar" whatsoever,  because
+       does not find an occurrence of "bar"  that  is  preceded  by  something
+       other  than "foo"; it finds any occurrence of "bar" whatsoever, because
        the assertion (?!foo) is always true when the next three characters are
        "bar". A lookbehind assertion is needed to achieve the other effect.


        If you want to force a matching failure at some point in a pattern, the
-       most  convenient  way  to  do  it  is with (?!) because an empty string
-       always matches, so an assertion that requires there not to be an  empty
+       most convenient way to do it is  with  (?!)  because  an  empty  string
+       always  matches, so an assertion that requires there not to be an empty
        string must always fail.


    Lookbehind assertions


-       Lookbehind  assertions start with (?<= for positive assertions and (?<!
+       Lookbehind assertions start with (?<= for positive assertions and  (?<!
        for negative assertions. For example,


          (?<!foo)bar


-       does find an occurrence of "bar" that is not  preceded  by  "foo".  The
-       contents  of  a  lookbehind  assertion are restricted such that all the
+       does  find  an  occurrence  of "bar" that is not preceded by "foo". The
+       contents of a lookbehind assertion are restricted  such  that  all  the
        strings it matches must have a fixed length. However, if there are sev-
-       eral  top-level  alternatives,  they  do  not all have to have the same
+       eral top-level alternatives, they do not all  have  to  have  the  same
        fixed length. Thus


          (?<=bullock|donkey)
@@ -4434,59 +4436,59 @@


          (?<!dogs?|cats?)


-       causes an error at compile time. Branches that match  different  length
-       strings  are permitted only at the top level of a lookbehind assertion.
-       This is an extension compared with  Perl  (at  least  for  5.8),  which
-       requires  all branches to match the same length of string. An assertion
+       causes  an  error at compile time. Branches that match different length
+       strings are permitted only at the top level of a lookbehind  assertion.
+       This  is  an  extension  compared  with  Perl (at least for 5.8), which
+       requires all branches to match the same length of string. An  assertion
        such as


          (?<=ab(c|de))


-       is not permitted, because its single top-level  branch  can  match  two
-       different  lengths,  but  it is acceptable if rewritten to use two top-
+       is  not  permitted,  because  its single top-level branch can match two
+       different lengths, but it is acceptable if rewritten to  use  two  top-
        level branches:


          (?<=abc|abde)


        In some cases, the Perl 5.10 escape sequence \K (see above) can be used
-       instead  of  a lookbehind assertion; this is not restricted to a fixed-
+       instead of a lookbehind assertion; this is not restricted to  a  fixed-
        length.


-       The implementation of lookbehind assertions is, for  each  alternative,
-       to  temporarily  move the current position back by the fixed length and
+       The  implementation  of lookbehind assertions is, for each alternative,
+       to temporarily move the current position back by the fixed  length  and
        then try to match. If there are insufficient characters before the cur-
        rent position, the assertion fails.


        PCRE does not allow the \C escape (which matches a single byte in UTF-8
-       mode) to appear in lookbehind assertions, because it makes it  impossi-
-       ble  to  calculate the length of the lookbehind. The \X and \R escapes,
+       mode)  to appear in lookbehind assertions, because it makes it impossi-
+       ble to calculate the length of the lookbehind. The \X and  \R  escapes,
        which can match different numbers of bytes, are also not permitted.


-       Possessive quantifiers can  be  used  in  conjunction  with  lookbehind
-       assertions  to  specify  efficient  matching  at the end of the subject
+       Possessive  quantifiers  can  be  used  in  conjunction with lookbehind
+       assertions to specify efficient matching at  the  end  of  the  subject
        string. Consider a simple pattern such as


          abcd$


-       when applied to a long string that does  not  match.  Because  matching
+       when  applied  to  a  long string that does not match. Because matching
        proceeds from left to right, PCRE will look for each "a" in the subject
-       and then see if what follows matches the rest of the  pattern.  If  the
+       and  then  see  if what follows matches the rest of the pattern. If the
        pattern is specified as


          ^.*abcd$


-       the  initial .* matches the entire string at first, but when this fails
+       the initial .* matches the entire string at first, but when this  fails
        (because there is no following "a"), it backtracks to match all but the
-       last  character,  then all but the last two characters, and so on. Once
-       again the search for "a" covers the entire string, from right to  left,
+       last character, then all but the last two characters, and so  on.  Once
+       again  the search for "a" covers the entire string, from right to left,
        so we are no better off. However, if the pattern is written as


          ^.*+(?<=abcd)


-       there  can  be  no backtracking for the .*+ item; it can match only the
-       entire string. The subsequent lookbehind assertion does a  single  test
-       on  the last four characters. If it fails, the match fails immediately.
-       For long strings, this approach makes a significant difference  to  the
+       there can be no backtracking for the .*+ item; it can  match  only  the
+       entire  string.  The subsequent lookbehind assertion does a single test
+       on the last four characters. If it fails, the match fails  immediately.
+       For  long  strings, this approach makes a significant difference to the
        processing time.


    Using multiple assertions
@@ -4495,18 +4497,18 @@


          (?<=\d{3})(?<!999)foo


-       matches  "foo" preceded by three digits that are not "999". Notice that
-       each of the assertions is applied independently at the  same  point  in
-       the  subject  string.  First  there  is a check that the previous three
-       characters are all digits, and then there is  a  check  that  the  same
+       matches "foo" preceded by three digits that are not "999". Notice  that
+       each  of  the  assertions is applied independently at the same point in
+       the subject string. First there is a  check  that  the  previous  three
+       characters  are  all  digits,  and  then there is a check that the same
        three characters are not "999".  This pattern does not match "foo" pre-
-       ceded by six characters, the first of which are  digits  and  the  last
-       three  of  which  are not "999". For example, it doesn't match "123abc-
+       ceded  by  six  characters,  the first of which are digits and the last
+       three of which are not "999". For example, it  doesn't  match  "123abc-
        foo". A pattern to do that is


          (?<=\d{3}...)(?<!999)foo


-       This time the first assertion looks at the  preceding  six  characters,
+       This  time  the  first assertion looks at the preceding six characters,
        checking that the first three are digits, and then the second assertion
        checks that the preceding three characters are not "999".


@@ -4514,79 +4516,79 @@

          (?<=(?<!foo)bar)baz


-       matches an occurrence of "baz" that is preceded by "bar" which in  turn
+       matches  an occurrence of "baz" that is preceded by "bar" which in turn
        is not preceded by "foo", while


          (?<=\d{3}(?!999)...)foo


-       is  another pattern that matches "foo" preceded by three digits and any
+       is another pattern that matches "foo" preceded by three digits and  any
        three characters that are not "999".



CONDITIONAL SUBPATTERNS

-       It is possible to cause the matching process to obey a subpattern  con-
-       ditionally  or to choose between two alternative subpatterns, depending
-       on the result of an assertion, or whether a previous capturing  subpat-
-       tern  matched  or not. The two possible forms of conditional subpattern
+       It  is possible to cause the matching process to obey a subpattern con-
+       ditionally or to choose between two alternative subpatterns,  depending
+       on  the result of an assertion, or whether a previous capturing subpat-
+       tern matched or not. The two possible forms of  conditional  subpattern
        are


          (?(condition)yes-pattern)
          (?(condition)yes-pattern|no-pattern)


-       If the condition is satisfied, the yes-pattern is used;  otherwise  the
-       no-pattern  (if  present)  is used. If there are more than two alterna-
+       If  the  condition is satisfied, the yes-pattern is used; otherwise the
+       no-pattern (if present) is used. If there are more  than  two  alterna-
        tives in the subpattern, a compile-time error occurs.


-       There are four kinds of condition: references  to  subpatterns,  refer-
+       There  are  four  kinds of condition: references to subpatterns, refer-
        ences to recursion, a pseudo-condition called DEFINE, and assertions.


    Checking for a used subpattern by number


-       If  the  text between the parentheses consists of a sequence of digits,
-       the condition is true if the capturing subpattern of  that  number  has
-       previously  matched.  An  alternative notation is to precede the digits
+       If the text between the parentheses consists of a sequence  of  digits,
+       the  condition  is  true if the capturing subpattern of that number has
+       previously matched. An alternative notation is to  precede  the  digits
        with a plus or minus sign. In this case, the subpattern number is rela-
        tive rather than absolute.  The most recently opened parentheses can be
-       referenced by (?(-1), the next most recent by (?(-2),  and  so  on.  In
+       referenced  by  (?(-1),  the  next most recent by (?(-2), and so on. In
        looping constructs it can also make sense to refer to subsequent groups
        with constructs such as (?(+2).


-       Consider the following pattern, which  contains  non-significant  white
+       Consider  the  following  pattern, which contains non-significant white
        space to make it more readable (assume the PCRE_EXTENDED option) and to
        divide it into three parts for ease of discussion:


          ( \( )?    [^()]+    (?(1) \) )


-       The first part matches an optional opening  parenthesis,  and  if  that
+       The  first  part  matches  an optional opening parenthesis, and if that
        character is present, sets it as the first captured substring. The sec-
-       ond part matches one or more characters that are not  parentheses.  The
+       ond  part  matches one or more characters that are not parentheses. The
        third part is a conditional subpattern that tests whether the first set
        of parentheses matched or not. If they did, that is, if subject started
        with an opening parenthesis, the condition is true, and so the yes-pat-
-       tern is executed and a  closing  parenthesis  is  required.  Otherwise,
-       since  no-pattern  is  not  present, the subpattern matches nothing. In
-       other words,  this  pattern  matches  a  sequence  of  non-parentheses,
+       tern  is  executed  and  a  closing parenthesis is required. Otherwise,
+       since no-pattern is not present, the  subpattern  matches  nothing.  In
+       other  words,  this  pattern  matches  a  sequence  of non-parentheses,
        optionally enclosed in parentheses.


-       If  you  were  embedding  this pattern in a larger one, you could use a
+       If you were embedding this pattern in a larger one,  you  could  use  a
        relative reference:


          ...other stuff... ( \( )?    [^()]+    (?(-1) \) ) ...


-       This makes the fragment independent of the parentheses  in  the  larger
+       This  makes  the  fragment independent of the parentheses in the larger
        pattern.


    Checking for a used subpattern by name


-       Perl  uses  the  syntax  (?(<name>)...) or (?('name')...) to test for a
-       used subpattern by name. For compatibility  with  earlier  versions  of
-       PCRE,  which  had this facility before Perl, the syntax (?(name)...) is
-       also recognized. However, there is a possible ambiguity with this  syn-
-       tax,  because  subpattern  names  may  consist entirely of digits. PCRE
-       looks first for a named subpattern; if it cannot find one and the  name
-       consists  entirely  of digits, PCRE looks for a subpattern of that num-
-       ber, which must be greater than zero. Using subpattern names that  con-
+       Perl uses the syntax (?(<name>)...) or (?('name')...)  to  test  for  a
+       used  subpattern  by  name.  For compatibility with earlier versions of
+       PCRE, which had this facility before Perl, the syntax  (?(name)...)  is
+       also  recognized. However, there is a possible ambiguity with this syn-
+       tax, because subpattern names may  consist  entirely  of  digits.  PCRE
+       looks  first for a named subpattern; if it cannot find one and the name
+       consists entirely of digits, PCRE looks for a subpattern of  that  num-
+       ber,  which must be greater than zero. Using subpattern names that con-
        sist entirely of digits is not recommended.


        Rewriting the above example to use a named subpattern gives this:
@@ -4597,85 +4599,85 @@
    Checking for pattern recursion


        If the condition is the string (R), and there is no subpattern with the
-       name R, the condition is true if a recursive call to the whole  pattern
+       name  R, the condition is true if a recursive call to the whole pattern
        or any subpattern has been made. If digits or a name preceded by amper-
        sand follow the letter R, for example:


          (?(R3)...) or (?(R&name)...)


-       the condition is true if the most recent recursion is into the  subpat-
-       tern  whose  number or name is given. This condition does not check the
+       the  condition is true if the most recent recursion is into the subpat-
+       tern whose number or name is given. This condition does not  check  the
        entire recursion stack.


-       At "top level", all these recursion test conditions are  false.  Recur-
+       At  "top  level", all these recursion test conditions are false. Recur-
        sive patterns are described below.


    Defining subpatterns for use by reference only


-       If  the  condition  is  the string (DEFINE), and there is no subpattern
-       with the name DEFINE, the condition is  always  false.  In  this  case,
-       there  may  be  only  one  alternative  in the subpattern. It is always
-       skipped if control reaches this point  in  the  pattern;  the  idea  of
-       DEFINE  is that it can be used to define "subroutines" that can be ref-
-       erenced from elsewhere. (The use of "subroutines" is described  below.)
-       For  example,  a pattern to match an IPv4 address could be written like
+       If the condition is the string (DEFINE), and  there  is  no  subpattern
+       with  the  name  DEFINE,  the  condition is always false. In this case,
+       there may be only one alternative  in  the  subpattern.  It  is  always
+       skipped  if  control  reaches  this  point  in the pattern; the idea of
+       DEFINE is that it can be used to define "subroutines" that can be  ref-
+       erenced  from elsewhere. (The use of "subroutines" is described below.)
+       For example, a pattern to match an IPv4 address could be  written  like
        this (ignore whitespace and line breaks):


          (?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
          \b (?&byte) (\.(?&byte)){3} \b


-       The first part of the pattern is a DEFINE group inside which a  another
-       group  named "byte" is defined. This matches an individual component of
-       an IPv4 address (a number less than 256). When  matching  takes  place,
-       this  part  of  the pattern is skipped because DEFINE acts like a false
+       The  first part of the pattern is a DEFINE group inside which a another
+       group named "byte" is defined. This matches an individual component  of
+       an  IPv4  address  (a number less than 256). When matching takes place,
+       this part of the pattern is skipped because DEFINE acts  like  a  false
        condition.


        The rest of the pattern uses references to the named group to match the
-       four  dot-separated  components of an IPv4 address, insisting on a word
+       four dot-separated components of an IPv4 address, insisting on  a  word
        boundary at each end.


    Assertion conditions


-       If the condition is not in any of the above  formats,  it  must  be  an
-       assertion.   This may be a positive or negative lookahead or lookbehind
-       assertion. Consider  this  pattern,  again  containing  non-significant
+       If  the  condition  is  not  in any of the above formats, it must be an
+       assertion.  This may be a positive or negative lookahead or  lookbehind
+       assertion.  Consider  this  pattern,  again  containing non-significant
        white space, and with the two alternatives on the second line:


          (?(?=[^a-z]*[a-z])
          \d{2}-[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )


-       The  condition  is  a  positive  lookahead  assertion  that  matches an
-       optional sequence of non-letters followed by a letter. In other  words,
-       it  tests  for the presence of at least one letter in the subject. If a
-       letter is found, the subject is matched against the first  alternative;
-       otherwise  it  is  matched  against  the  second.  This pattern matches
-       strings in one of the two forms dd-aaa-dd or dd-dd-dd,  where  aaa  are
+       The condition  is  a  positive  lookahead  assertion  that  matches  an
+       optional  sequence of non-letters followed by a letter. In other words,
+       it tests for the presence of at least one letter in the subject.  If  a
+       letter  is found, the subject is matched against the first alternative;
+       otherwise it is  matched  against  the  second.  This  pattern  matches
+       strings  in  one  of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
        letters and dd are digits.



COMMENTS

-       The  sequence (?# marks the start of a comment that continues up to the
-       next closing parenthesis. Nested parentheses  are  not  permitted.  The
-       characters  that make up a comment play no part in the pattern matching
+       The sequence (?# marks the start of a comment that continues up to  the
+       next  closing  parenthesis.  Nested  parentheses are not permitted. The
+       characters that make up a comment play no part in the pattern  matching
        at all.


-       If the PCRE_EXTENDED option is set, an unescaped # character outside  a
-       character  class  introduces  a  comment  that continues to immediately
+       If  the PCRE_EXTENDED option is set, an unescaped # character outside a
+       character class introduces a  comment  that  continues  to  immediately
        after the next newline in the pattern.



RECURSIVE PATTERNS

-       Consider the problem of matching a string in parentheses, allowing  for
-       unlimited  nested  parentheses.  Without the use of recursion, the best
-       that can be done is to use a pattern that  matches  up  to  some  fixed
-       depth  of  nesting.  It  is not possible to handle an arbitrary nesting
+       Consider  the problem of matching a string in parentheses, allowing for
+       unlimited nested parentheses. Without the use of  recursion,  the  best
+       that  can  be  done  is  to use a pattern that matches up to some fixed
+       depth of nesting. It is not possible to  handle  an  arbitrary  nesting
        depth.


        For some time, Perl has provided a facility that allows regular expres-
-       sions  to recurse (amongst other things). It does this by interpolating
-       Perl code in the expression at run time, and the code can refer to  the
+       sions to recurse (amongst other things). It does this by  interpolating
+       Perl  code in the expression at run time, and the code can refer to the
        expression itself. A Perl pattern using code interpolation to solve the
        parentheses problem can be created like this:


@@ -4685,117 +4687,117 @@
        refers recursively to the pattern in which it appears.


        Obviously, PCRE cannot support the interpolation of Perl code. Instead,
-       it supports special syntax for recursion of  the  entire  pattern,  and
-       also  for  individual  subpattern  recursion. After its introduction in
-       PCRE and Python, this kind of recursion was  introduced  into  Perl  at
+       it  supports  special  syntax  for recursion of the entire pattern, and
+       also for individual subpattern recursion.  After  its  introduction  in
+       PCRE  and  Python,  this  kind of recursion was introduced into Perl at
        release 5.10.


-       A  special  item  that consists of (? followed by a number greater than
+       A special item that consists of (? followed by a  number  greater  than
        zero and a closing parenthesis is a recursive call of the subpattern of
-       the  given  number, provided that it occurs inside that subpattern. (If
-       not, it is a "subroutine" call, which is described  in  the  next  sec-
-       tion.)  The special item (?R) or (?0) is a recursive call of the entire
+       the given number, provided that it occurs inside that  subpattern.  (If
+       not,  it  is  a  "subroutine" call, which is described in the next sec-
+       tion.) The special item (?R) or (?0) is a recursive call of the  entire
        regular expression.


-       In PCRE (like Python, but unlike Perl), a recursive subpattern call  is
+       In  PCRE (like Python, but unlike Perl), a recursive subpattern call is
        always treated as an atomic group. That is, once it has matched some of
        the subject string, it is never re-entered, even if it contains untried
        alternatives and there is a subsequent matching failure.


-       This  PCRE  pattern  solves  the nested parentheses problem (assume the
+       This PCRE pattern solves the nested  parentheses  problem  (assume  the
        PCRE_EXTENDED option is set so that white space is ignored):


          \( ( (?>[^()]+) | (?R) )* \)


-       First it matches an opening parenthesis. Then it matches any number  of
-       substrings  which  can  either  be  a sequence of non-parentheses, or a
-       recursive match of the pattern itself (that is, a  correctly  parenthe-
+       First  it matches an opening parenthesis. Then it matches any number of
+       substrings which can either be a  sequence  of  non-parentheses,  or  a
+       recursive  match  of the pattern itself (that is, a correctly parenthe-
        sized substring).  Finally there is a closing parenthesis.


-       If  this  were  part of a larger pattern, you would not want to recurse
+       If this were part of a larger pattern, you would not  want  to  recurse
        the entire pattern, so instead you could use this:


          ( \( ( (?>[^()]+) | (?1) )* \) )


-       We have put the pattern into parentheses, and caused the  recursion  to
+       We  have  put the pattern into parentheses, and caused the recursion to
        refer to them instead of the whole pattern.


-       In  a  larger  pattern,  keeping  track  of  parenthesis numbers can be
-       tricky. This is made easier by the use of relative references. (A  Perl
-       5.10  feature.)   Instead  of  (?1)  in the pattern above you can write
+       In a larger pattern,  keeping  track  of  parenthesis  numbers  can  be
+       tricky.  This is made easier by the use of relative references. (A Perl
+       5.10 feature.)  Instead of (?1) in the  pattern  above  you  can  write
        (?-2) to refer to the second most recently opened parentheses preceding
-       the  recursion.  In  other  words,  a  negative number counts capturing
+       the recursion. In other  words,  a  negative  number  counts  capturing
        parentheses leftwards from the point at which it is encountered.


-       It is also possible to refer to  subsequently  opened  parentheses,  by
-       writing  references  such  as (?+2). However, these cannot be recursive
-       because the reference is not inside the  parentheses  that  are  refer-
-       enced.  They  are  always  "subroutine" calls, as described in the next
+       It  is  also  possible  to refer to subsequently opened parentheses, by
+       writing references such as (?+2). However, these  cannot  be  recursive
+       because  the  reference  is  not inside the parentheses that are refer-
+       enced. They are always "subroutine" calls, as  described  in  the  next
        section.


-       An alternative approach is to use named parentheses instead.  The  Perl
-       syntax  for  this  is (?&name); PCRE's earlier syntax (?P>name) is also
+       An  alternative  approach is to use named parentheses instead. The Perl
+       syntax for this is (?&name); PCRE's earlier syntax  (?P>name)  is  also
        supported. We could rewrite the above example as follows:


          (?<pn> \( ( (?>[^()]+) | (?&pn) )* \) )


-       If there is more than one subpattern with the same name,  the  earliest
+       If  there  is more than one subpattern with the same name, the earliest
        one is used.


-       This  particular  example pattern that we have been looking at contains
-       nested unlimited repeats, and so the use of atomic grouping for  match-
-       ing  strings  of non-parentheses is important when applying the pattern
+       This particular example pattern that we have been looking  at  contains
+       nested  unlimited repeats, and so the use of atomic grouping for match-
+       ing strings of non-parentheses is important when applying  the  pattern
        to strings that do not match. For example, when this pattern is applied
        to


          (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()


-       it  yields "no match" quickly. However, if atomic grouping is not used,
-       the match runs for a very long time indeed because there  are  so  many
-       different  ways  the  + and * repeats can carve up the subject, and all
+       it yields "no match" quickly. However, if atomic grouping is not  used,
+       the  match  runs  for a very long time indeed because there are so many
+       different ways the + and * repeats can carve up the  subject,  and  all
        have to be tested before failure can be reported.


        At the end of a match, the values set for any capturing subpatterns are
        those from the outermost level of the recursion at which the subpattern
-       value is set.  If you want to obtain  intermediate  values,  a  callout
-       function  can be used (see below and the pcrecallout documentation). If
+       value  is  set.   If  you want to obtain intermediate values, a callout
+       function can be used (see below and the pcrecallout documentation).  If
        the pattern above is matched against


          (ab(cd)ef)


-       the value for the capturing parentheses is  "ef",  which  is  the  last
-       value  taken  on at the top level. If additional parentheses are added,
+       the  value  for  the  capturing  parentheses is "ef", which is the last
+       value taken on at the top level. If additional parentheses  are  added,
        giving


          \( ( ( (?>[^()]+) | (?R) )* ) \)
             ^                        ^
             ^                        ^


-       the string they capture is "ab(cd)ef", the contents of  the  top  level
-       parentheses.  If there are more than 15 capturing parentheses in a pat-
+       the  string  they  capture is "ab(cd)ef", the contents of the top level
+       parentheses. If there are more than 15 capturing parentheses in a  pat-
        tern, PCRE has to obtain extra memory to store data during a recursion,
-       which  it  does  by  using pcre_malloc, freeing it via pcre_free after-
-       wards. If  no  memory  can  be  obtained,  the  match  fails  with  the
+       which it does by using pcre_malloc, freeing  it  via  pcre_free  after-
+       wards.  If  no  memory  can  be  obtained,  the  match  fails  with the
        PCRE_ERROR_NOMEMORY error.


-       Do  not  confuse  the (?R) item with the condition (R), which tests for
-       recursion.  Consider this pattern, which matches text in  angle  brack-
-       ets,  allowing for arbitrary nesting. Only digits are allowed in nested
-       brackets (that is, when recursing), whereas any characters are  permit-
+       Do not confuse the (?R) item with the condition (R),  which  tests  for
+       recursion.   Consider  this pattern, which matches text in angle brack-
+       ets, allowing for arbitrary nesting. Only digits are allowed in  nested
+       brackets  (that is, when recursing), whereas any characters are permit-
        ted at the outer level.


          < (?: (?(R) \d++  | [^<>]*+) | (?R)) * >


-       In  this  pattern, (?(R) is the start of a conditional subpattern, with
-       two different alternatives for the recursive and  non-recursive  cases.
+       In this pattern, (?(R) is the start of a conditional  subpattern,  with
+       two  different  alternatives for the recursive and non-recursive cases.
        The (?R) item is the actual recursive call.



SUBPATTERNS AS SUBROUTINES

        If the syntax for a recursive subpattern reference (either by number or
-       by name) is used outside the parentheses to which it refers,  it  oper-
-       ates  like a subroutine in a programming language. The "called" subpat-
+       by  name)  is used outside the parentheses to which it refers, it oper-
+       ates like a subroutine in a programming language. The "called"  subpat-
        tern may be defined before or after the reference. A numbered reference
        can be absolute or relative, as in these examples:


@@ -4807,105 +4809,105 @@

          (sens|respons)e and \1ibility


-       matches  "sense and sensibility" and "response and responsibility", but
+       matches "sense and sensibility" and "response and responsibility",  but
        not "sense and responsibility". If instead the pattern


          (sens|respons)e and (?1)ibility


-       is used, it does match "sense and responsibility" as well as the  other
-       two  strings.  Another  example  is  given  in the discussion of DEFINE
+       is  used, it does match "sense and responsibility" as well as the other
+       two strings. Another example is  given  in  the  discussion  of  DEFINE
        above.


        Like recursive subpatterns, a "subroutine" call is always treated as an
-       atomic  group. That is, once it has matched some of the subject string,
-       it is never re-entered, even if it contains  untried  alternatives  and
+       atomic group. That is, once it has matched some of the subject  string,
+       it  is  never  re-entered, even if it contains untried alternatives and
        there is a subsequent matching failure.


-       When  a  subpattern is used as a subroutine, processing options such as
+       When a subpattern is used as a subroutine, processing options  such  as
        case-independence are fixed when the subpattern is defined. They cannot
        be changed for different calls. For example, consider this pattern:


          (abc)(?i:(?-1))


-       It  matches  "abcabc". It does not match "abcABC" because the change of
+       It matches "abcabc". It does not match "abcABC" because the  change  of
        processing option does not affect the called subpattern.



ONIGURUMA SUBROUTINE SYNTAX

-       For compatibility with Oniguruma, the non-Perl syntax \g followed by  a
+       For  compatibility with Oniguruma, the non-Perl syntax \g followed by a
        name or a number enclosed either in angle brackets or single quotes, is
-       an alternative syntax for referencing a  subpattern  as  a  subroutine,
-       possibly  recursively. Here are two of the examples used above, rewrit-
+       an  alternative  syntax  for  referencing a subpattern as a subroutine,
+       possibly recursively. Here are two of the examples used above,  rewrit-
        ten using this syntax:


          (?<pn> \( ( (?>[^()]+) | \g<pn> )* \) )
          (sens|respons)e and \g'1'ibility


-       PCRE supports an extension to Oniguruma: if a number is preceded  by  a
+       PCRE  supports  an extension to Oniguruma: if a number is preceded by a
        plus or a minus sign it is taken as a relative reference. For example:


          (abc)(?i:\g<-1>)


-       Note  that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not
-       synonymous. The former is a back reference; the latter is a  subroutine
+       Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are  not
+       synonymous.  The former is a back reference; the latter is a subroutine
        call.



CALLOUTS

        Perl has a feature whereby using the sequence (?{...}) causes arbitrary
-       Perl code to be obeyed in the middle of matching a regular  expression.
+       Perl  code to be obeyed in the middle of matching a regular expression.
        This makes it possible, amongst other things, to extract different sub-
        strings that match the same pair of parentheses when there is a repeti-
        tion.


        PCRE provides a similar feature, but of course it cannot obey arbitrary
        Perl code. The feature is called "callout". The caller of PCRE provides
-       an  external function by putting its entry point in the global variable
-       pcre_callout.  By default, this variable contains NULL, which  disables
+       an external function by putting its entry point in the global  variable
+       pcre_callout.   By default, this variable contains NULL, which disables
        all calling out.


-       Within  a  regular  expression,  (?C) indicates the points at which the
-       external function is to be called. If you want  to  identify  different
-       callout  points, you can put a number less than 256 after the letter C.
-       The default value is zero.  For example, this pattern has  two  callout
+       Within a regular expression, (?C) indicates the  points  at  which  the
+       external  function  is  to be called. If you want to identify different
+       callout points, you can put a number less than 256 after the letter  C.
+       The  default  value is zero.  For example, this pattern has two callout
        points:


          (?C1)abc(?C2)def


        If the PCRE_AUTO_CALLOUT flag is passed to pcre_compile(), callouts are
-       automatically installed before each item in the pattern. They  are  all
+       automatically  installed  before each item in the pattern. They are all
        numbered 255.


        During matching, when PCRE reaches a callout point (and pcre_callout is
-       set), the external function is called. It is provided with  the  number
-       of  the callout, the position in the pattern, and, optionally, one item
-       of data originally supplied by the caller of pcre_exec().  The  callout
-       function  may cause matching to proceed, to backtrack, or to fail alto-
+       set),  the  external function is called. It is provided with the number
+       of the callout, the position in the pattern, and, optionally, one  item
+       of  data  originally supplied by the caller of pcre_exec(). The callout
+       function may cause matching to proceed, to backtrack, or to fail  alto-
        gether. A complete description of the interface to the callout function
        is given in the pcrecallout documentation.



BACKTRACKING CONTROL

-       Perl  5.10 introduced a number of "Special Backtracking Control Verbs",
+       Perl 5.10 introduced a number of "Special Backtracking Control  Verbs",
        which are described in the Perl documentation as "experimental and sub-
-       ject  to  change or removal in a future version of Perl". It goes on to
-       say: "Their usage in production code should be noted to avoid  problems
+       ject to change or removal in a future version of Perl". It goes  on  to
+       say:  "Their usage in production code should be noted to avoid problems
        during upgrades." The same remarks apply to the PCRE features described
        in this section.


-       Since these verbs are specifically related  to  backtracking,  most  of
-       them  can  be  used  only  when  the  pattern  is  to  be matched using
+       Since  these  verbs  are  specifically related to backtracking, most of
+       them can be  used  only  when  the  pattern  is  to  be  matched  using
        pcre_exec(), which uses a backtracking algorithm. With the exception of
        (*FAIL), which behaves like a failing negative assertion, they cause an
        error if encountered by pcre_dfa_exec().


-       The new verbs make use of what was previously invalid syntax: an  open-
+       The  new verbs make use of what was previously invalid syntax: an open-
        ing parenthesis followed by an asterisk. In Perl, they are generally of
        the form (*VERB:ARG) but PCRE does not support the use of arguments, so
-       its  general  form is just (*VERB). Any number of these verbs may occur
+       its general form is just (*VERB). Any number of these verbs  may  occur
        in a pattern. There are two kinds:


    Verbs that act immediately
@@ -4914,94 +4916,94 @@


           (*ACCEPT)


-       This verb causes the match to end successfully, skipping the  remainder
-       of  the pattern. When inside a recursion, only the innermost pattern is
-       ended immediately. PCRE differs  from  Perl  in  what  happens  if  the
-       (*ACCEPT)  is inside capturing parentheses. In Perl, the data so far is
+       This  verb causes the match to end successfully, skipping the remainder
+       of the pattern. When inside a recursion, only the innermost pattern  is
+       ended  immediately.  PCRE  differs  from  Perl  in  what happens if the
+       (*ACCEPT) is inside capturing parentheses. In Perl, the data so far  is
        captured: in PCRE no data is captured. For example:


          A(A|B(*ACCEPT)|C)D


-       This matches "AB", "AAD", or "ACD", but when it matches "AB",  no  data
+       This  matches  "AB", "AAD", or "ACD", but when it matches "AB", no data
        is captured.


          (*FAIL) or (*F)


-       This  verb  causes the match to fail, forcing backtracking to occur. It
-       is equivalent to (?!) but easier to read. The Perl documentation  notes
-       that  it  is  probably  useful only when combined with (?{}) or (??{}).
-       Those are, of course, Perl features that are not present in  PCRE.  The
-       nearest  equivalent is the callout feature, as for example in this pat-
+       This verb causes the match to fail, forcing backtracking to  occur.  It
+       is  equivalent to (?!) but easier to read. The Perl documentation notes
+       that it is probably useful only when combined  with  (?{})  or  (??{}).
+       Those  are,  of course, Perl features that are not present in PCRE. The
+       nearest equivalent is the callout feature, as for example in this  pat-
        tern:


          a+(?C)(*FAIL)


-       A match with the string "aaaa" always fails, but the callout  is  taken
+       A  match  with the string "aaaa" always fails, but the callout is taken
        before each backtrack happens (in this example, 10 times).


    Verbs that act after backtracking


        The following verbs do nothing when they are encountered. Matching con-
-       tinues with what follows, but if there is no subsequent match, a  fail-
-       ure  is  forced.   The  verbs  differ  in  exactly what kind of failure
+       tinues  with what follows, but if there is no subsequent match, a fail-
+       ure is forced.  The verbs  differ  in  exactly  what  kind  of  failure
        occurs.


          (*COMMIT)


-       This verb causes the whole match to fail outright if the  rest  of  the
-       pattern  does  not match. Even if the pattern is unanchored, no further
-       attempts to find a match by advancing the start point take place.  Once
-       (*COMMIT)  has been passed, pcre_exec() is committed to finding a match
+       This  verb  causes  the whole match to fail outright if the rest of the
+       pattern does not match. Even if the pattern is unanchored,  no  further
+       attempts  to find a match by advancing the start point take place. Once
+       (*COMMIT) has been passed, pcre_exec() is committed to finding a  match
        at the current starting point, or not at all. For example:


          a+(*COMMIT)b


-       This matches "xxaab" but not "aacaab". It can be thought of as  a  kind
+       This  matches  "xxaab" but not "aacaab". It can be thought of as a kind
        of dynamic anchor, or "I've started, so I must finish."


          (*PRUNE)


-       This  verb causes the match to fail at the current position if the rest
+       This verb causes the match to fail at the current position if the  rest
        of the pattern does not match. If the pattern is unanchored, the normal
-       "bumpalong"  advance to the next starting character then happens. Back-
-       tracking can occur as usual to the left of (*PRUNE), or  when  matching
-       to  the right of (*PRUNE), but if there is no match to the right, back-
-       tracking cannot cross (*PRUNE).  In simple cases, the use  of  (*PRUNE)
+       "bumpalong" advance to the next starting character then happens.  Back-
+       tracking  can  occur as usual to the left of (*PRUNE), or when matching
+       to the right of (*PRUNE), but if there is no match to the right,  back-
+       tracking  cannot  cross (*PRUNE).  In simple cases, the use of (*PRUNE)
        is just an alternative to an atomic group or possessive quantifier, but
-       there are some uses of (*PRUNE) that cannot be expressed in  any  other
+       there  are  some uses of (*PRUNE) that cannot be expressed in any other
        way.


          (*SKIP)


-       This  verb  is like (*PRUNE), except that if the pattern is unanchored,
-       the "bumpalong" advance is not to the next character, but to the  posi-
-       tion  in  the  subject where (*SKIP) was encountered. (*SKIP) signifies
-       that whatever text was matched leading up to it cannot  be  part  of  a
+       This verb is like (*PRUNE), except that if the pattern  is  unanchored,
+       the  "bumpalong" advance is not to the next character, but to the posi-
+       tion in the subject where (*SKIP) was  encountered.  (*SKIP)  signifies
+       that  whatever  text  was  matched leading up to it cannot be part of a
        successful match. Consider:


          a+(*SKIP)b


-       If  the  subject  is  "aaaac...",  after  the first match attempt fails
-       (starting at the first character in the  string),  the  starting  point
+       If the subject is "aaaac...",  after  the  first  match  attempt  fails
+       (starting  at  the  first  character in the string), the starting point
        skips on to start the next attempt at "c". Note that a possessive quan-
-       tifer does not have the same effect in this example; although it  would
-       suppress  backtracking  during  the  first  match  attempt,  the second
-       attempt would start at the second character instead of skipping  on  to
+       tifer  does not have the same effect in this example; although it would
+       suppress backtracking  during  the  first  match  attempt,  the  second
+       attempt  would  start at the second character instead of skipping on to
        "c".


          (*THEN)


        This verb causes a skip to the next alternation if the rest of the pat-
        tern does not match. That is, it cancels pending backtracking, but only
-       within  the  current  alternation.  Its name comes from the observation
+       within the current alternation. Its name  comes  from  the  observation
        that it can be used for a pattern-based if-then-else block:


          ( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ ) ...


-       If the COND1 pattern matches, FOO is tried (and possibly further  items
-       after  the  end  of  the group if FOO succeeds); on failure the matcher
-       skips to the second alternative and tries COND2,  without  backtracking
-       into  COND1.  If  (*THEN)  is  used outside of any alternation, it acts
+       If  the COND1 pattern matches, FOO is tried (and possibly further items
+       after the end of the group if FOO succeeds);  on  failure  the  matcher
+       skips  to  the second alternative and tries COND2, without backtracking
+       into COND1. If (*THEN) is used outside  of  any  alternation,  it  acts
        exactly like (*PRUNE).



@@ -5019,7 +5021,7 @@

REVISION

-       Last updated: 08 March 2009
+       Last updated: 18 March 2009
        Copyright (c) 1997-2009 University of Cambridge.
 ------------------------------------------------------------------------------



Modified: code/trunk/doc/pcrepattern.3
===================================================================
--- code/trunk/doc/pcrepattern.3    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/doc/pcrepattern.3    2009-03-23 12:05:43 UTC (rev 406)
@@ -364,7 +364,7 @@
 \ew, and always match \eD, \eS, and \eW. This is true even when Unicode
 character property support is available. These sequences retain their original
 meanings from before UTF-8 support was available, mainly for efficiency
-reasons. Note that this also affects \eb, because it is defined in terms of \ew 
+reasons. Note that this also affects \eb, because it is defined in terms of \ew
 and \eW.
 .P
 The sequences \eh, \eH, \ev, and \eV are Perl 5.10 features. In contrast to the


Modified: code/trunk/pcre_compile.c
===================================================================
--- code/trunk/pcre_compile.c    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/pcre_compile.c    2009-03-23 12:05:43 UTC (rev 406)
@@ -1663,15 +1663,15 @@
     {
     BOOL empty_branch;
     if (GET(code, 1) == 0) return TRUE;    /* Hit unclosed bracket */
-    
-    /* If a conditional group has only one branch, there is a second, implied, 
+
+    /* If a conditional group has only one branch, there is a second, implied,
     empty branch, so just skip over the conditional, because it could be empty.
     Otherwise, scan the individual branches of the group. */
-    
+
     if (c == OP_COND && code[GET(code, 1)] != OP_ALT)
       code += GET(code, 1);
     else
-      {       
+      {
       empty_branch = FALSE;
       do
         {
@@ -1682,7 +1682,7 @@
       while (*code == OP_ALT);
       if (!empty_branch) return FALSE;   /* All branches are non-empty */
       }
-        
+
     c = *code;
     continue;
     }


Modified: code/trunk/pcre_dfa_exec.c
===================================================================
--- code/trunk/pcre_dfa_exec.c    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/pcre_dfa_exec.c    2009-03-23 12:05:43 UTC (rev 406)
@@ -2200,16 +2200,16 @@
         {
         int local_offsets[1000];
         int local_workspace[1000];
-        int codelink = GET(code, 1); 
+        int codelink = GET(code, 1);
         int condcode;
-        
+
         /* Because of the way auto-callout works during compile, a callout item
-        is inserted between OP_COND and an assertion condition. This does not 
+        is inserted between OP_COND and an assertion condition. This does not
         happen for the other conditions. */


         if (code[LINK_SIZE+1] == OP_CALLOUT)
-          { 
-          rrc = 0; 
+          {
+          rrc = 0;
           if (pcre_callout != NULL)
             {
             pcre_callout_block cb;
@@ -2229,10 +2229,10 @@
             }
           if (rrc > 0) break;                      /* Fail this thread */
           code += _pcre_OP_lengths[OP_CALLOUT];    /* Skip callout data */
-          } 
+          }


         condcode = code[LINK_SIZE+1];
-        
+
         /* Back reference conditions are not supported */


         if (condcode == OP_CREF) return PCRE_ERROR_DFA_UCOND;
@@ -2250,7 +2250,7 @@
           {
           int value = GET2(code, LINK_SIZE+2);
           if (value != RREF_ANY) return PCRE_ERROR_DFA_UCOND;
-          if (recursing > 0) 
+          if (recursing > 0)
             { ADD_ACTIVE(state_offset + LINK_SIZE + 4, 0); }
           else { ADD_ACTIVE(state_offset + codelink + LINK_SIZE + 1, 0); }
           }
@@ -2434,7 +2434,7 @@
       /* Handle callouts */


       case OP_CALLOUT:
-      rrc = 0; 
+      rrc = 0;
       if (pcre_callout != NULL)
         {
         pcre_callout_block cb;
@@ -2451,9 +2451,9 @@
         cb.capture_last     = -1;
         cb.callout_data     = md->callout_data;
         if ((rrc = (*pcre_callout)(&cb)) < 0) return rrc;   /* Abandon */
-        } 
-      if (rrc == 0) 
-        { ADD_ACTIVE(state_offset + _pcre_OP_lengths[OP_CALLOUT], 0); } 
+        }
+      if (rrc == 0)
+        { ADD_ACTIVE(state_offset + _pcre_OP_lengths[OP_CALLOUT], 0); }
       break;




Modified: code/trunk/pcre_exec.c
===================================================================
--- code/trunk/pcre_exec.c    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/pcre_exec.c    2009-03-23 12:05:43 UTC (rev 406)
@@ -334,9 +334,9 @@
   /* Function local variables */


const uschar *Xcallpat;
-#ifdef SUPPORT_UTF8
+#ifdef SUPPORT_UTF8
const uschar *Xcharptr;
-#endif
+#endif
const uschar *Xdata;
const uschar *Xnext;
const uschar *Xpp;
@@ -641,7 +641,7 @@
{
minimize = possessive = FALSE;
op = *ecode;
-
+
/* For partial matching, remember if we ever hit the end of the subject after
matching at least one subject character. */

@@ -794,7 +794,7 @@
     case OP_COND:
     case OP_SCOND:
     codelink= GET(ecode, 1);
-      
+
     /* Because of the way auto-callout works during compile, a callout item is
     inserted between OP_COND and an assertion condition. */


@@ -822,7 +822,7 @@
       }


     condcode = ecode[LINK_SIZE+1];
-     
+
     /* Now see what the actual condition is */


     if (condcode == OP_RREF)         /* Recursion test */


Modified: code/trunk/pcre_internal.h
===================================================================
--- code/trunk/pcre_internal.h    2009-03-23 12:05:20 UTC (rev 405)
+++ code/trunk/pcre_internal.h    2009-03-23 12:05:43 UTC (rev 406)
@@ -58,7 +58,7 @@
 #error The use of both EBCDIC and SUPPORT_UTF8 is not supported.
 #endif


-/* If SUPPORT_UCP is defined, SUPPORT_UTF8 must also be defined. The
+/* If SUPPORT_UCP is defined, SUPPORT_UTF8 must also be defined. The
"configure" script ensures this, but not everybody uses "configure". */

#if defined SUPPORT_UCP && !defined SUPPORT_UTF8